способ управления многомашинным комплексом системы поддержания пластового давления

Классы МПК:E21B43/20 вытеснением водой 
Автор(ы):,
Патентообладатель(и):Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тюменский государственный нефтегазовый университет" (ТюмГНГУ) (RU)
Приоритеты:
подача заявки:
2012-02-27
публикация патента:

Изобретение относится к области добычи нефти и может быть использовано для управления технологической системой поддержания пластового давления - ППД. Обеспечивает повышение уровня управляемости технологической системы ППД, расширение диапазона регулирования насосами и более маневренные воздействия на пласт, а также уменьшение удельного потребления электроэнергии при необходимости поддержания энергетических параметров насосов в зоне оптимального КПД. Сущность изобретения: по способу производят построение базовых напорно-расходных и энергетических характеристик основных и подпорных насосов и далее в процессе эксплуатации путем постоянного сравнения напорно-расходных и энергетических характеристик с базовым по всем насосам всех кустовых насосных станций - КНС, параллельно работающих на сеть водоводов высокого давления, производят выбор оптимального числа одновременно работающих основных насосов с согласованием их напорно-расходных и энергетических характеристик в зоне оптимального КПД путем изменения частоты вращения их электроприводов, исключая применение дроссельных элементов. Дополнительно измеряют температуру перекачиваемого агента на входе и выходе каждого насоса, а также производят регулирование частоты вращения электроприводов подпорных насосов низкого давления, контролируя удельный расход электроэнергии по всем основным насосам. При выходе значений гидравлических и энергетических параметров за пределы критических любого из основных насосов всех параллельно работающих КНС производят его переключение на резервный насос, технические характеристики которого позволяют согласовать напорно-расходные характеристики основных насосов в зоне оптимального КПД. 4 ил.

способ управления многомашинным комплексом системы поддержания   пластового давления, патент № 2493361 способ управления многомашинным комплексом системы поддержания   пластового давления, патент № 2493361 способ управления многомашинным комплексом системы поддержания   пластового давления, патент № 2493361 способ управления многомашинным комплексом системы поддержания   пластового давления, патент № 2493361

Формула изобретения

Способ управления многомашинным комплексом системы поддержания пластового давления, включающий управление насосами высокого давления и подпорными насосами низкого давления, заключающийся в том, что при первом пуске основного или подпорного насоса в эксплуатацию или после проведения их капитального ремонта измеряют значения величин его основных гидравлических и энергетических параметров за некоторый промежуток времени и передают их по системе телемеханики в программу сбора, обработки и преставления данных, где на основе усредненных значений зафиксированных величин, производят построение базовых напорно-расходных и энергетических характеристик насосов и, далее в процессе эксплуатации, путем постоянного сравнения напорно-расходных и энергетических характеристик с базовыми, по всем насосам конкретной кустовой насосной станции и смежных кустовых насосных станций, параллельно работающих на сеть водоводов высокого давления, производят выбор оптимального числа одновременно работающих основных насосов с согласованием их напорно-расходных и энергетических характеристик в области оптимального КПД с условием минимума энергетических затрат, исключая применение дроссельных элементов регулирования, при регулировании частоты вращения электроприводов основных насосов на входе и выходе каждого насоса дополнительно измеряют температуру перекачиваемого агента, граничные значения которой определены для хорошего, удовлетворительного и аварийного технического состояния насосов и передают в программу сбора, обработки и преставления данных, а также регулируют частоту вращения электроприводов подпорных насосов низкого давления, при этом контролируют удельный расход электроэнергии по всем основным насосам и, при выходе значений гидравлических и энергетических параметров за пределы критических, переключают на резервный насос, технические характеристики которого позволяют согласовать напорно-расходные характеристики основных насосов в зоне оптимального КПД.

Описание изобретения к патенту

Изобретение относится к области добычи нефти и может быть использовано для управления технологической системой поддержания пластового давления (ППД) при разработке нефтяных месторождений, в частности насосами кустовых насосных станций (КНС).

Существующая технология закачек в системе ППД представляет собой совокупность кустовых насосных станций, водоводов, нагнетательных скважин, запорно-регулирующей арматуры, работающих с изменяющимися параметрами в тесной связи с технологическими системами добычи и подготовки нефти. Большинство нефтепромысловых насосных станций построено по схеме параллельной работы 4-6 однотипных центробежных насосов с приводом от нерегулируемых электрических двигателей переменного тока, а управление производительностью КНС для обеспечения требуемой подачи сводятся к применению дроссельных элементов на выходе насосов или в применении байпасных водоводов, соединяющих выходные и входные коллекторы КНС [Нормы технологического проектирования объектов сбора, транспорта, подготовки нефти, газа и воды нефтяных месторождений. ВНТП 3-85, МНП, 1985].

Насосы КНС изготовляются и ремонтируются в разных условиях и с разным качеством. Время и условия эксплуатации насосов также могут различаться, что влечет ухудшение их гидравлических и энергетических характеристик. Потребляемая насосом мощность определяется режимом работы насоса, зависящего, в свою очередь, от его технического состояния. При параллельной работе насосов, работающих на общую сеть водоводов, с существенно отличающимися и сниженными гидравлическими характеристиками, насосы с более низким техническим состоянием имеют повышенный удельный расход электроэнергии из-за уменьшения их производительности. Разница в удельных расходах электроэнергии по отдельным агрегатам может достигать 40-60%.

Указанные режимы эксплуатации насосов неизбежно приводят к нерациональному использованию и избыточному потреблению электроэнергии, а также уменьшению их межремонтного периода.

Оптимизация работы технологической системы поддержания пластового давления связана с необходимостью поиска энергоэффективных способов управления кустовыми насосными станциями - комплексного подхода к системе учитывая особенности работы каждого насоса, с учетом технического состояния каждого насоса, а также технологических связей и ограничений, накладываемых технологической системой, при регулировании частоты напряжения приводов основных и подпорных насосов в области оптимального КПД с условием минимума энергетических затрат, исключая применение дроссельных элементов регулирования, для выполнения технологического задания по закачке воды в пласт.

Известен способ автоматического управления насосной станцией, включающий регулирование характеристики насосов путем изменения частоты вращения приводного асинхронного электродвигателя, питаемого от преобразователя, операции по включению и выключению агрегатов, осуществляющихся путем подачи управляющих сигналов от контроллера на магнитные пускатели, а регулирование частоты вращения осуществляется при помощи частотного преобразователя, получающего сигнал от контроллера, который, в свою очередь, получает сигнал от датчика давления и сравнивает его с заданным программно значением [RU 2332588 C1, F04D 15/00, 27.08.2008].

Недостатками данного способа являются: отсутствие контроля технического состояния и зоны КПД работы насосов, что допускает работу насосов на участках характеристик с пониженным значением КПД и приводит к увеличению затрат электроэнергии; наличие в системе регулирования только одного частотного преобразователя, что приводит к снижению надежности системы регулирования в случае выхода из строя преобразователя частоты, а, следовательно, низкому уровню ее управляемости и отсутствию возможности оптимизации режимов насосной станции.

Известен способ непрерывного измерения и анализа в реальном масштабе времени коэффициента полезного действия насосов в насосно-трубопроводном комплексе магистрального нефтепровода, заключающийся в том, что проводят непрерывное измерение, и анализ в реальном масштабе времени базового и текущего коэффициента полезного действия каждого насоса в насосно-трубопроводном комплексе системы нефтепровода, информация о которых обеспечивает своевременное обнаружение возможных отклонений от заданного режима работы насосных агрегатов за счет падения КПД, что позволяют исключить их неэффективную работу и возможные аварийные отключения [RU 2277186 C2, F04D 15/00, 27.05.2006].

Недостатками является то, что при осуществлении способа отсутствует возможность регулирования гидравлических и энергетических характеристик насосов, что при отличающихся указанных характеристиках приводит к нерациональному перераспределению нагрузок в системе параллельно работающих насосов и как следствие, высокий уровень затрат электроэнергии.

Наиболее близким по технической сущности к предлагаемому способу является способ регулировки работы системы лопастных нагнетателей при переменной нагрузке, заключающийся в том, что проводят диагностику энергопотребления при работе группы параллельно подключенных лопастных нагнетателей в условиях нестационарной нагрузки с учетом возможности регулирования подачи потребителю жидкой среды с дросселированием сети трубопроводов и ступенчатым регулированием путем включения в одновременную работу одной или нескольких групп насосных агрегатов, каждая из которых включает несколько разнотипных лопастных нагнетателей с различными характеристиками и индивидуальным управлением каждым лопастным нагнетателем в группе с обеспечением совместимости работы разнотипных нагнетателей в группе, при этом определяют минимально возможные затраты электроэнергии при условии обеспечения требуемой потребителю подачи во всем возможном диапазоне ее изменения с минимально допустимыми напорами и оптимальным значением КПД, определяют величину минимального избыточного напора во всем диапазоне изменения нагрузки в напорном коллекторе при изменении нагрузки с оптимизацией режима работы, причем в процессе управления в режиме реального времени измеряют подачу каждого нагнетателя и суммарную подачу группы одновременно работающих нагнетателей, давление в напорном коллекторе или в контрольной точке сети, частоту вращения рабочего колеса каждого нагнетателя, давление на входе в каждый насос и мощность, потребляемую электродвигателем привода каждого нагнетателя, и путем применения частотно-регулируемого привода и изменения состава насосного оборудования устанавливают величину минимального избыточного напора в напорном коллекторе [RU 2230938 C2, F04D 15/00, 20.06.2004]

Недостатками данного способа являются: отсутствие контроля технического состояния и снижения КПД насосов процессе эксплуатации, что приводит к их неэффективной эксплуатации и сужает возможности частотного регулирования при оптимизации режимов системы; необходимость установки частотно-регулируемого привода на каждый насос, что приводит к значительному увеличению материальных затрат на их приобретение и увеличению производственных площадей для их размещения; проведение обрезки рабочих колес одного или нескольких насосов, в процессе оптимизации режима работы и состава насосного оборудования, что требует дополнительного вывода насосных агрегатов из работы и дополнительного задействования трудовых и технических ресурсов; отсутствие возможности контроля КПД и энергопотребления насосов смежных насосных станций параллельно работающих на общую сеть водоводов.

Во всех указанных выше способах общим недостатком является возможность регулирования насосами только в сторону уменьшения подачи перекачиваемого агента. Также общим недостатком является то, что на выходе насосов измеряемыми параметрами являются только напор и расход и отсутствует контроль температуры перекачиваемого агента на входе и выходе насоса, что снижает качество и полноту оценки технического состояния насосов.

Технической задачей, на решение которой направленно настоящее изобретение, является повышение уровня управляемости технологической системы ППД, с обеспечением возможности оптимизации режимов работы КНС по минимуму удельных затрат электроэнергии.

Поставленная задача решается за счет достижения технического результата, который заключается в повышении уровня управляемости технологической системы ППД, расширение диапазона регулирования насосами КНС и более маневренных воздействий на пласт, а также уменьшения удельного потребления электроэнергии при необходимости поддержания энергетических параметров насосов в зоне оптимального КПД.

Указанный технический результат достигается тем, что дополнительно измеряют температуру перекачиваемого агента на входе и выходе каждого насоса, граничные значения которой определены для хорошего, удовлетворительного и аварийного технического состояния насосов и передают в программу сбора, обработки и преставления данных на диспетчерский пункт управления, а также регулируют частоту вращения электроприводов подпорных насосов низкого давления, контролируя удельный расход электроэнергии по всем основным насосам и при выходе значений гидравлических и энергетических параметров за пределы критических, любого из основных насосов всех параллельно работающих КНС производят его переключение на резервный насос, технические характеристики которых позволяют согласовать напорно-расходные характеристики основных насосов в зоне оптимального КПД.

Оптимальное управление многомашинным комплексом, включает подбор числа работающих насосов кустовых насосных станций, при согласовании их напорно-расходных и энергетических харктеристик, на основе непрерывного контроля технического состояния каждого, с определением величины КПД, в которой находится рабочая точка, определяемая совокупностью требуемых технических и технологических ограничений, при регулировании частоты напряжения приводов насосов высокого давления и подпорных насосов в наиболее экономичной области с оптимальным КПД.

Наличие двух преобразователей частоты приводов насосов высокого давления, является достаточным по условиям надежности функционирования системы и позволяет согласовать работу насосов высокого давления и подпорных насосов с различными напорно-расходными и энергетическими характеристиками в зоне их оптимального КПД с возможностью выполнения ими технологического задания по закачке воды в пласт.

Заявляемое техническое решение поясняется чертежами, где: на фиг.1 изображена технологическая схема системы поддержания пластового давления с предварительным сбросом воды на кустах нагнетательных скважин; на фиг.2 изображены напорно-расходные характеристики двух параллельно работающих насосов высокого давления с различными техническими характеристиками и их совместная напорно-расходная характеристика; на фиг.3 изображена совместная напорно-расходная характеристика двух параллельно работающих насосов высокого давления с частотным регулированием их электроприводов; на фиг.4 изображена совместная напорно-расходная характеристика двух параллельно работающих насосов высокого давления и подпорных насосов с частотным регулированием электроприводов, как насосов высокого давления, так и подпорных насосов.

Технологическая система (фиг.1) содержит: резервуары с водой 1, водоводы низкого давления 2, электропривод 3 подпорных насосов 4 низкого давления, сборный коллектор низкого давления 5, кустовую насосную станцию 6, два преобразователя частоты 7 (6 кВ), электропривод 8 основных насосов 9 высокого давления, преобразователи частоты 10 (0,4 кВ), водоводы высокого давления 11. Представленные на фиг.1 элементы запорной арматуры 12 являются обязательными в технологической системе, однако, указанные элементы не влияют на осуществление заявляемого изобретения и достижение технического результата. Под насосами 9 высокого давления понимаются насосы основные - находящиеся в работе в определенный момент времени и резервные.

На фиг.2 представлены характеристики двух параллельно работающих основных насосов 9 с различными техническими характеристиками, где способ управления многомашинным комплексом системы поддержания   пластового давления, патент № 2493361 Q-способ управления многомашинным комплексом системы поддержания   пластового давления, патент № 2493361 Н - совместная напорно-расходная характеристика двух параллельно работающих основных насосов 9; Q2-H2 - напорно-расходная характеристика первого основного насоса 9 с лучшим техническим состоянием; Q1-H1 - напорно-расходная характеристика второго основного насоса 9 с худшим техническим состоянием в системе параллельных насосов; Q-способ управления многомашинным комплексом системы поддержания   пластового давления, патент № 2493361 - характеристика КПД двух основных насосов 9; Qc -Hc - напорно-расходная характеристика сети; Q тр·1 - требуемый объем подачи, для выполнения технологического задания; H1 - создаваемый напор при подаче Qтр .

На фиг.3 представлены характеристики двух параллельно работающих основных насосов 9 с напорно-расходными характеристиками, согласованными в зоне оптимального КПД путем частотного регулирования электроприводов 8, где способ управления многомашинным комплексом системы поддержания   пластового давления, патент № 2493361 Q-способ управления многомашинным комплексом системы поддержания   пластового давления, патент № 2493361 H - совместная напорно-расходная характеристика двух параллельно работающих основных насосов 9, при частотном регулировании их электроприводов 8; Q1-H1 - напорно-расходная характеристика первого основного насоса 9; Q2-H 2 - напорно-расходная характеристика второго основного насоса 9; q-t) -характеристика КПД двух основных насосов 9; Q с-Hc - напорно-расходная характеристика сети; Qтр·2 - требуемый объем подачи, для выполнения технологического задания при уменьшении объема закачки воды; Н2 - создаваемый напор при подаче Qтр·2

На фиг.4 представлены характеристики двух параллельно работающих основных насосов 9, с частотным регулированием их электроприводов 8 и характеристики подпорных насосов 4, с частотными регулированием их электроприводов 3, подключенных последовательно основным насосам 9, где способ управления многомашинным комплексом системы поддержания   пластового давления, патент № 2493361 Q-способ управления многомашинным комплексом системы поддержания   пластового давления, патент № 2493361 H - совместная напорно-расходная характеристика двух параллельно работающих основных насосов 9; Qп1-Hп1, Qп2-Hп2 - идентичные напорно-расходные характеристики двух подпорных насосов 4; способ управления многомашинным комплексом системы поддержания   пластового давления, патент № 2493361 Qп-способ управления многомашинным комплексом системы поддержания   пластового давления, патент № 2493361 Hп - совместная напорно-расходная характеристика двух параллельно работающих подпорных насосов 4; способ управления многомашинным комплексом системы поддержания   пластового давления, патент № 2493361 Q-способ управления многомашинным комплексом системы поддержания   пластового давления, патент № 2493361 H+способ управления многомашинным комплексом системы поддержания   пластового давления, патент № 2493361 Qп-способ управления многомашинным комплексом системы поддержания   пластового давления, патент № 2493361 Hп - совместная напорно-расходная характеристика двух параллельно работающих основных насосов 9, с частотным регулировании их электроприводов 8 и последовательно подключенных к основным насосам 9 двух подпорных насосов 4, с частотным регулированием их электроприводов 3; Qтр·3 - требуемый объем подачи, для выполнения технологического задания при увеличении объема закачки воды; Н3 - создаваемый напор при подаче Qтр·3

Способ управления многомашинным комплексом системы поддержания пластового давления осуществляется следующим образом.

При первом пуске основного 9 или подпорного 4 насоса в эксплуатацию, либо после проведения капитального ремонта, измеряют показания величин его основных гидравлически и энергетических параметров за некоторый промежуток времени и передают их по системе телемеханики на диспетчерский пункт управления, где с помощью программы сбора, обработки и представления данных, на основе усредненных значений зафиксированных величин, моделируют режимов работы каждого из основных 9 и подпорных 4 насосов технологической системы, с построением их напорно-расходных и энергетических характеристик, по зависимостям H=f(Q), N=f(Q), способ управления многомашинным комплексом системы поддержания   пластового давления, патент № 2493361 =f(Q), где Н - напор (м), N - мощность (кВт), Q - подача (м3), способ управления многомашинным комплексом системы поддержания   пластового давления, патент № 2493361 -КПД, и далее в процессе работы путем сравнения КПД по всем основным насосам конкретной кустовой насосной станции 6 и КНС (на схеме не указаны), параллельно работающих на сеть водоводов высокого давления 11, подбирают оптимальное число одновременно работающих насосов из числа основных 9, подпорных 4 и резервных, с согласованием их гидравлических и энергетических характеристик в области оптимального КПД, путем изменения частоты вращения электроприводов 8 основных 9 и электроприводов 3 подпорных насосов 4, при условии минимума совокупных удельных затрат электроэнергии на выполнение ими технологического задания по закачке агента в пласт. Контроль технического состояния также включает измерение температуры перекачиваемого агента на входе и выходе каждого из основных 9 и подпорных насосов 4, граничные значения которой определены для хорошего, удовлетворительного и аварийного технического состояния.

Количество преобразователей частоты 10 в системе регулирования насосов 9 КНС 6, не более двух, что достаточно по условиям надежности работы системы управления и минимума капитальных затрат на их приобретение и производственных площадей для размещения.

В целях увеличения диапазона регулирования насосами 9 КНС 6, и более маневренных воздействий на пласт - возможности изменения в сторону увеличения суммарной подачи на выходе КНС, а также уменьшения удельного потребления электроэнергии, при необходимости поддержания энергетических параметров основных насосов 9 в зоне оптимального КПД и без дополнительного включения основных насосов 9, регулируют частоту вращения подпорных насосов 4, путем изменения частоты питающего электропривод 3 напряжения. Различие напорно-расходных характеристик насосов приводит к различной их производительности, при этом некоторые могут быть перегружены, а некоторые могут работать с низкой производительностью, что влечет повышенный удельный расход электроэнергии при работе КНС. Наличие преобразователей частоты 7 электроприводов 8, позволяет согласовать напорно-расходные характеристики основных насосов 9 в зоне оптимального КПД. Включение подпорных насосов 4 последовательно с основными насосами 9, позволяет увеличить суммарную подачу (Q) КНС 6, а также избежать дополнительного включения резервных насосов 9.

При реализации способа управления многомашинным комплексом системы поддержания пластового давления производят постоянный контроль технического состояния основных 9 и подпорных 4 насосов всех КНС работающих параллельно на общую сеть водоводов высокого давления 11 и по системе телемеханики передаются на диспетчерский пункт управления, где на основе имитационной модели технологической системы строят напорно-расходные и энергетические всех насосов и рассчитывают уровень загрузки каждого насоса как основного 9, так и подпорного 4 и путем регулирования частоты вращения их электроприводов 3 и 8, с целью минимизации удельных затрат электроэнергии, равномерного использования моторесурса, и выполнения технологического задания на закачку, согласуют их работу в области оптимального КПД, либо в случае невозможности выполнения условия согласования производят переключение основных насосов 9 на резервные, технические характеристики которых позволяют согласовать напорно-расходные характеристики основных насосов 9 в зоне оптимального КПД.

В качестве примера рассмотрим работу одной КНС технологической системы ППД. На КНС 6 (фиг.1) работают параллельно 6 насосов высокого давления 9, например ЦНС 180-1422, из них два в резерве, четыре в работе. Электроприводами 8 насосов 9 являются электродвигатели с возможностью работы как через преобразователь частоты (6кВ) 7, так и напрямую с шин напряжения 6 кВ (на схеме не указаны). В качестве подпорных насосов 4, используются насосы низкого давления, например ЦНС 180-170 электроприводами 3 которых являются электродвигатели 0,4 кВ, с возможностью работы от преобразователей частоты (0,4 кВ) 10, так и от шин напряжения 0,4 кВ (на схеме не указаны).

Рассмотрим возможность реализации способа на примере параллельной работы двух основных насосов 9 и двух подпорных насосов 4. Алгоритм управления большим количеством насосов осуществляется аналогичным образом. В качестве подпорных насосов 4 используются насосы малой мощности ЦНС 180-170, подключенные через преобразователь частоты (0,4 кВ) 10.

Потребляемая насосами 9 мощность, определяется техническим состоянием и зависящим от него режимом их работы. При параллельной работе насосов 9 с существенно отличающимися и сниженными гидравлическими характеристиками, насосы 9 с более низким техническим состоянием имеют повышенный удельный расход электроэнергии из-за снижения их производительности. Таким образом для выполнения технологического задания на закачку Qтр1 , второй из насосов 9, с лучшими техническими показателями будет обеспечивать необходимый объем подачи Qтр1 при напоре Нтр1 в зоне оптимального КПД, а первый, с худшими техническими показателями будет работать «вхолостую» не влияя на подачу Qтр двух параллельных насосов, но потребляя из сети мощность, тем самым увеличивая удельный расход электроэнергии на закачку заданного объема Qтр , при выполнении технологического задания. Таким образом, совместная напорная характеристика двух насосов 9 примет вид, представленный на фиг.2, где изображены напорно-расходные характеристики двух параллельно работающих насосов высокого давления с различными техническими характеристиками и их совместная напорно-расходная характеристика.

При необходимости увеличения подачи Qтр2 на выходе КНС 6, на диспетчерском пункте происходит обработка полученных (с основных 9 и подпорных насосов 4) и заданных (Qтр2) параметров с составлением имитационной модели технологической системы и выбором необходимых насосов 9, как из числа рабочих, так и резервных, для выполнения планового задания на закачку Qтр2 по минимуму удельных затрат электроэнергии. На основе полученной модели необходимого технологического режима и на основе сформированных гидравлических и энергетических характеристик всех основных насосов 9 КНС, работающих на общую сеть водоводов высокого давления 11, с диспетчерского пункта подают управляющий сигнал на включение в работу насосов 9 из числа резервных, либо изменение частоты вращения находящихся в работе основных насосов 9, гидравлические характеристики которых обеспечат возможность реализации технологического задания Qтр2, по минимуму удельных затрат и равномерного использования моторесурса насосов 9. В рассматриваемом примере наиболее оптимальным является изменение гидравлических характеристик Q1-H1 и Q 2-H2, первого насоса 9 и второго насоса 9, соответственно. Изменяя частоту вращения привода второго насоса 9, снижая ее в пределах допустимого оптимального КПД, одновременно подают управляющие сигналы на изменениние частоты вращения электропривода 8 первого насоса 9, для приведения характеристик параллельно работающих насосов 9 к одинаковым, тем самым реализуют закачку заданного объема воды Qтр2 при равномерной загрузке насосных агрегатов, в зоне оптимального КПД, предотвращая энергетически неэффективный режим работы. Таким образом, совместная гидравлическая характеристика двух насосов 9 примет вид, представленный на фиг.3, где представлены характеристики двух параллельно работающих основных насосов 9 с напорно-расходными характеристиками, согласованными в зоне оптимального КПД путем частотного регулирования электроприводов 8.

При необходимости увеличения подачи Qтр3 на выходе КНС 6, регулируют частоту вращения электроприводов 3 подпорных насосов 4 малой мощности, например ЦНС 180-170, подключенных последовательно с основными насосами 9, что дает возможность увеличение подачи Qтр3 на выходе КНС 6 и более маневренных воздействий на пласт, при необходимости увеличения объема закачки Qтр3, а также уменьшения удельного потребления электроэнергии, при необходимости поддержания энергетических параметров насосов 9 в зоне оптимального КПД, исключая включение дополнительных, из числа резервных насосов 9, и тем самым, минимизировать удельные затраты электроэнергии на закачку заданного объема воды Q тр3. Таким образом, совместная гидравлическая характеристика основных 9 и подпорных 4 насосов примет вид, представленный на фиг.4, где представлены характеристики двух параллельно работающих основных насосов 9, с частотным регулированием их электроприводов 8 и характеристики подпорных насосов 4, с частотными регулированием их электроприводов 3, подключенных последовательно основным насосам 9.

Класс E21B43/20 вытеснением водой 

способ разработки нефтяной залежи горизонтальными скважинами с проведением многократного гидравлического разрыва пласта -  патент 2528309 (10.09.2014)
способ разработки нефтяной залежи с проведением гидроразрыва пласта -  патент 2528308 (10.09.2014)
способ регулирования разработки нефтяной залежи -  патент 2528185 (10.09.2014)
способ одновременно-раздельной эксплуатации скважины -  патент 2527958 (10.09.2014)
способ разработки нефтяной залежи закачкой воды и газа -  патент 2527432 (27.08.2014)
способ разработки нефтяной залежи горизонтальными скважинами -  патент 2527429 (27.08.2014)
способ разработки трещинно-порового коллектора -  патент 2527053 (27.08.2014)
способ разработки низкопроницаемой нефтяной залежи горизонтальными скважинами с поддержанием пластового давления -  патент 2526430 (20.08.2014)
способ разработки трещиноватых коллекторов -  патент 2526082 (20.08.2014)
способ разработки трещиноватых коллекторов -  патент 2526037 (20.08.2014)
Наверх