способ определения прироста подъемной силы летательного аппарата при внешнем подводе энергии

Классы МПК:G01M9/00 Аэродинамические испытания; устройства, связанные с аэродинамическими трубами
Автор(ы):, ,
Патентообладатель(и):Федеральное государственное унитарное предприятие "Центральный аэрогидродинамический институт имени профессора Н.Е. Жуковского" (ФГУП "ЦАГИ") (RU)
Приоритеты:
подача заявки:
2011-12-29
публикация патента:

Изобретение относится к области экспериментальной аэродинамики летательных аппаратов, преимущественно к разработке методов воспроизведения в аэродинамических трубах условий обтекания летательных аппаратов и разработке методов повышения аэродинамического качества летательных аппаратов. Способ включает создание модели летательного аппарата и ее весовые испытания в аэродинамической трубе. Для определения прироста подъемной силы натурного летательного аппарата при внешнем подводе энергии по испытаниям его модели в аэродинамической трубе при изготовлении модели соблюдают геометрическое подобие с натурой формы ЛА и места энергоподвода, а в качестве внешнего энергоносителя используют нереагирующий газ с высокой удельной статической энтальпией, например гелий. Измеряют в аэродинамической трубе прирост подъемной силы модели при внешнем подводе энергоносителя и определяют коэффициент подобия, а затем определяют прирост подъемной силы для условий натурного полета. Технический результат заключается в возможности определения прироста подъемной силы натурного летательного аппарата при внешнем подводе энергии путем экспериментов на модели в аэродинамической трубе. 4 ил. способ определения прироста подъемной силы летательного аппарата   при внешнем подводе энергии, патент № 2488796

способ определения прироста подъемной силы летательного аппарата   при внешнем подводе энергии, патент № 2488796 способ определения прироста подъемной силы летательного аппарата   при внешнем подводе энергии, патент № 2488796 способ определения прироста подъемной силы летательного аппарата   при внешнем подводе энергии, патент № 2488796 способ определения прироста подъемной силы летательного аппарата   при внешнем подводе энергии, патент № 2488796

Формула изобретения

Способ определения прироста подъемной силы летательного аппарата при внешнем подводе энергии, включающий создание модели летательного аппарата и ее весовые испытания в аэродинамической трубе, отличающийся тем, что создают геометрически подобные модели и места подвода газа-энергоносителя, реализуют в аэродинамической трубе режим полета натурного летательного аппарата, а вместо натурного энергоносителя используют нереагирующий газ с высокой удельной статической энтальпией, например гелий или холодный водород, производят измерение приращения подъемной силы модели и силы аэродинамического сопротивления в зависимости от расхода газа-энергоносителя и параметров набегающего потока, по известным значениям параметров набегающего потока и его энтальпии, а также величинам расхода энергоносителя и его энтальпии определяют коэффициент подобия Р для пересчета трубных измерений на натурный полет, равный:

способ определения прироста подъемной силы летательного аппарата   при внешнем подводе энергии, патент № 2488796

где способ определения прироста подъемной силы летательного аппарата   при внешнем подводе энергии, патент № 2488796 У - прирост подъемной силы модели,

Uспособ определения прироста подъемной силы летательного аппарата   при внешнем подводе энергии, патент № 2488796 - скорость набегающего на модель потока,

способ определения прироста подъемной силы летательного аппарата   при внешнем подводе энергии, патент № 2488796 - расход газа-энергоносителя,

Нспособ определения прироста подъемной силы летательного аппарата   при внешнем подводе энергии, патент № 2488796 - энтальпия набегающего потока,

Hm - энтальпия газа-энергоносителя,

а затем определяют прирост подъемной силы для условий натурного полета

способ определения прироста подъемной силы летательного аппарата   при внешнем подводе энергии, патент № 2488796

где способ определения прироста подъемной силы летательного аппарата   при внешнем подводе энергии, патент № 2488796 - коэффициент подобия,

способ определения прироста подъемной силы летательного аппарата   при внешнем подводе энергии, патент № 2488796 - расход газа энергоносителя,

Hспособ определения прироста подъемной силы летательного аппарата   при внешнем подводе энергии, патент № 2488796 нат - энтальпия набегающего потока,

H mнат - энтальпия газа энергоносителя,

Uспособ определения прироста подъемной силы летательного аппарата   при внешнем подводе энергии, патент № 2488796 нат - скорость набегающего потока,

нат - относится к условиям натурного полета.

Описание изобретения к патенту

Изобретение относится к области экспериментальной аэродинамики летательных аппаратов (ЛА), преимущественно к разработке методов воспроизведения в аэродинамических трубах (АДТ) условий обтекания ЛА и разработке методов повышения аэродинамического качества ЛА.

Известны способы и устройства определения аэродинамических нагрузок в АДТ на моделях ЛА [А.Поуп, К.Гойн. Аэродинамические трубы больших скоростей. М., 1968, Мир, с.504], заключающиеся в том, что геометрически подобную модель ЛА устанавливают в АДТ на аэродинамические весы и измеряют подъемную силу, силы аэродинамического сопротивления, моментные характеристики. Такой способ не пригоден при исследованиях влияния внешнего подвода энергии на аэродинамические нагрузки натурного ЛА, так как в аэродинамических трубах практически невозможно воспроизвести из-за существенного отличия размеров ЛА и его модели необходимое соотношение характеристик аэродинамических его времен обтекания и времен воспламенения и сгорания топлив..

Более близким к предлагаемому изобретению относится способ исследования влияния внешнего подвода энергии на нагрузки модели ЛА, изложенный в работе [Е.А.Флетчер, Р.Дж.Дорш, X.Ален. Горение высокореактивных топлив в сверхзвуковых воздушных потоках. ВРТ, ИЛ, М., № 4, 1961, с.3]. Способ основан на том, что модель помещают в поток газа в АДТ, через отверстия в модели подают горячий газ-энергоноситель, являющийся продуктом горения борогидрида алюминия, воспламеняемого электрическим разрядом, измеряют распределение статического давления по поверхности модели и по этому распределению рассчитывают влияние впрыска горящего топлива на подъемную силу.

Однако такой способ чреват ошибками. Во-первых, это ошибки в определении количества подведенной энергии, так как время реакций горения при большой скорости потока соизмеримо с временем перемещения массы газа, то есть полностью энергия горения выделится за моделью вниз по потоку. Во-вторых, определение подъемной силы по распределению давления менее надежно, чем прямые измерения с помощью весов, а в горящем потоке использование, например, тензовесов затруднено.

Задачей и техническим результатом заявляемого изобретения является, прямое измерение прироста подъемной силы при подводе энергии к модели летательного аппарата с помощью нереагирующего энергоносителя, определение критерия подобия способ определения прироста подъемной силы летательного аппарата   при внешнем подводе энергии, патент № 2488796 связывающего результаты измерения прироста подъемной силы на модели в АДТ с приростом ее в натурном полете ЛА при внешнем подводе энергии.

Решение поставленной задачи и технический результат достигаются тем, что в способе определения подъемной силы летательного аппарата при внешнем подводе энергии включающем создание модели летательного аппарата и ее весовые испытания в аэродинамической трубе, создают геометрически подобные модели и места подвода газа-энергоносителя, реализуют в аэродинамической трубе режим полета натурного летательного аппарата, а вместо натурного энергоносителя используют нереагирующий газ с высокой удельной статической энтальпией, например, гелий или холодный водород, производят измерение приращения подъемной силы модели и силы аэродинамического сопротивления в зависимости от расхода газа-энергоносителя и параметров набегающего потока, по известным значениям параметров набегающего потока и его энтальпии, а также величины расхода энергоносителя и его энтальпии определяют коэффициент подобия способ определения прироста подъемной силы летательного аппарата   при внешнем подводе энергии, патент № 2488796 для пересчета трубных измерений на натурный полет равный:

способ определения прироста подъемной силы летательного аппарата   при внешнем подводе энергии, патент № 2488796 ,

где способ определения прироста подъемной силы летательного аппарата   при внешнем подводе энергии, патент № 2488796 У - прирост подъемной силы модели,

U способ определения прироста подъемной силы летательного аппарата   при внешнем подводе энергии, патент № 2488796 - скорость набегающего на модель потока,

способ определения прироста подъемной силы летательного аппарата   при внешнем подводе энергии, патент № 2488796 - расход газа-энергоносителя,

Hспособ определения прироста подъемной силы летательного аппарата   при внешнем подводе энергии, патент № 2488796 - энтальпия набегающего потока,

H m - энтальпия газа-энергоносителя,

а затем определяют прирост подъемной силы для условий натурного полета

способ определения прироста подъемной силы летательного аппарата   при внешнем подводе энергии, патент № 2488796

где способ определения прироста подъемной силы летательного аппарата   при внешнем подводе энергии, патент № 2488796 - коэффициент подобия,

способ определения прироста подъемной силы летательного аппарата   при внешнем подводе энергии, патент № 2488796 - расход газа-энергоносителя,

Hспособ определения прироста подъемной силы летательного аппарата   при внешнем подводе энергии, патент № 2488796 нат - энтальпия набегающего потока,

Hmнат - энтальпия газа-энергоносителя,

Uспособ определения прироста подъемной силы летательного аппарата   при внешнем подводе энергии, патент № 2488796 нат - скорость набегающего потока,

нат - относится к условиям натурного полета.

Схемы и графики, поясняющие способ, приведены на фигурах 1, 2, 3, 4.

На фигуре 1 представлена схема трубного эксперимента.

На фигуре 2 - фотография модели, имеющей вид пластины.

На фигуре 3 показана зависимость приращения подъемной силы и лобового сопротивления на модели сверхзвукового пассажирского самолета (СПС) от расхода газа - энергоносителя.

На фигуре 4 показано приращение подъемной силы от параметра t (обобщающие результаты для разных моделей: пластина, треугольное крыло, сверхзвуковой пассажирский самолет (СПС).

На фигуре 1:

1 - сопло;

2 - рабочая часть (камера Эйфеля);

3 - диффузор;

4 - державка с моделью;

5 - холодильник;

6 - вакуумный затвор;

7 - баллон с газом-энергоносителем.

На фигуре 2:

4 - модель (пластина);

8 - отверстия для выхода газа - энергоносителя;

9 - элемент аэродинамических весов; 10 - державка;

11- трубки для подвода газа-энергоносителя.

Способ реализуется следующим образом. Поток воздуха подается в тракт АДТ из атмосферы и двигается за счет перепада давления между атмосферой и вакуумной емкостью. Поток (фиг.1) разгоняется в сопле 1, проходит через камеру Эйфеля 2, диффузор 3, холодильник 5, затвор 6. В камере Эйфеля размещена испытуемая модель 4. При достижении заданного режима работы АДТ из баллонов 7 к модели 4 через отверстия в модели 8, (фиг.2) по трассам 11 (фиг.2) подается газ-энергоноситель. Проводят весовые измерения с помощью внутримодельных весов 9 (фиг.2). Измеряют приращение подъемной силы и лобового сопротивления.

Для весовых измерений использованы быстродействующие 3-компонентные тензовесы с диапазоном измерений до 1 кг и быстродействием ~7·10-3 с. Тензовесы градуированы вместе с моделями и пневмотрассами. Влияние динамических составляющих сил проверяют на динамическом стенде.

Пример условий эксперимента:

число M потока М=5, давление Р0=1 атм, температура T0способ определения прироста подъемной силы летательного аппарата   при внешнем подводе энергии, патент № 2488796 298 K, статическое давление в камере Эйфеля Рст способ определения прироста подъемной силы летательного аппарата   при внешнем подводе энергии, патент № 2488796 2·102 Па, рабочий газ-воздух, газы-энергоносители - гелий, азот, кислород.

Измерялась подъемная сила У0 без подвода энергии к внешней поверхности модели, У - с подводом энергии, сила реакции при подводе газа-энергоносителя Fp. Тогда приращение подъемной силы способ определения прироста подъемной силы летательного аппарата   при внешнем подводе энергии, патент № 2488796 У при подводе энергии равно:

способ определения прироста подъемной силы летательного аппарата   при внешнем подводе энергии, патент № 2488796 У=У-У0-Fp

Расход подводимого к модели газа-энергоносителя m определялся по величине полного давления перед мерным соплом в трассе подвода газа. Величина скорости набегающего потока определялась по числу М потока для выбранного сопла (M=5).

Из приближенного интегрального анализа процессов массо и теплоотвода к гиперзвуковому потоку следует, что величина приращения подъемной силы способ определения прироста подъемной силы летательного аппарата   при внешнем подводе энергии, патент № 2488796 У при подводе энергии к внешней поверхности модели зависит от расхода энергоносителя способ определения прироста подъемной силы летательного аппарата   при внешнем подводе энергии, патент № 2488796 , энтальпии набегающего потока Hспособ определения прироста подъемной силы летательного аппарата   при внешнем подводе энергии, патент № 2488796 , энтальпии энергоносителя Hm скорости набегающего потока Uспособ определения прироста подъемной силы летательного аппарата   при внешнем подводе энергии, патент № 2488796 , и определяется из следующего соотношения:

способ определения прироста подъемной силы летательного аппарата   при внешнем подводе энергии, патент № 2488796

Для удобства обозначим:

способ определения прироста подъемной силы летательного аппарата   при внешнем подводе энергии, патент № 2488796 , т.е.

способ определения прироста подъемной силы летательного аппарата   при внешнем подводе энергии, патент № 2488796 У=f(t)

Эта величина имеет размерность силы и является функцией прироста подъемной силы. Но, кроме того, прирост подъемной силы зависит от условий подвода энергоносителя: места подвода, расположения зоны реакции, направления потока газа - энергоносителя.

Как сказано выше, эту зависимость в заявляемом способе предложено определять в трубном эксперименте как коэффициент подобия способ определения прироста подъемной силы летательного аппарата   при внешнем подводе энергии, патент № 2488796 . Экспериментами с варьированием газов-энергоносителей с разными удельными энтальпиями (гелий, кислород, азот), с варьированием расходов энергоносителей была показана универсальность этого коэффициента при соблюдении геометрического подобия схем энергоподвода. Это является предпосылкой для использования этого коэффициента, определенного в АДТ, в условиях натурного полета (в дальнейшем это будет проверено в натурном полете).

Тогда приращение подъемной силы при внешнем подводе энергии в натурном полете определится:

способ определения прироста подъемной силы летательного аппарата   при внешнем подводе энергии, патент № 2488796

На фигуре 3 приведены измеренные значения прироста подъемной силы способ определения прироста подъемной силы летательного аппарата   при внешнем подводе энергии, патент № 2488796 У при подводе энергоносителя на модели СПС, прирост лобового сопротивления способ определения прироста подъемной силы летательного аппарата   при внешнем подводе энергии, патент № 2488796 X незначителен. Это относится только к малым углам атаки (способ определения прироста подъемной силы летательного аппарата   при внешнем подводе энергии, патент № 2488796 способ определения прироста подъемной силы летательного аппарата   при внешнем подводе энергии, патент № 2488796 1°). На фигуре 4 представлена зависимость коэффициента способ определения прироста подъемной силы летательного аппарата   при внешнем подводе энергии, патент № 2488796 от параметра t для разных моделей. Согласно фигуре 4, в экспериментах максимальное увеличение подъемной силы при внешнем подводе энергии получено на модели треугольного крыла при значениях параметра tспособ определения прироста подъемной силы летательного аппарата   при внешнем подводе энергии, патент № 2488796 0,2 Ньютона.

Приведем пример использования измеренного по предлагаемому способу коэффициента способ определения прироста подъемной силы летательного аппарата   при внешнем подводе энергии, патент № 2488796 для оценки эффективности влияния на подъемную силу внешнего подвода энергии на натурном ЛА. В соответствии с вышеизложенным, при внешнем подводе энергии

способ определения прироста подъемной силы летательного аппарата   при внешнем подводе энергии, патент № 2488796

В то же время при увеличении тяги двигателя за счет дополнительного расхода топлива способ определения прироста подъемной силы летательного аппарата   при внешнем подводе энергии, патент № 2488796 рост подъемной силы составляет

способ определения прироста подъемной силы летательного аппарата   при внешнем подводе энергии, патент № 2488796

где I - удельный импульс двигателя,

K - аэродинамическое качество,

g - ускорение силы тяжести.

Тогда способ определения прироста подъемной силы летательного аппарата   при внешнем подводе энергии, патент № 2488796

Это отношение больше единицы при значениях: I=2800 с (для ГПВРД на водороде, для которого Нmнат =1,22·105 кДж/(кг), способ определения прироста подъемной силы летательного аппарата   при внешнем подводе энергии, патент № 2488796 =1,45, Uспособ определения прироста подъемной силы летательного аппарата   при внешнем подводе энергии, патент № 2488796 нат=1500 м/с, Kспособ определения прироста подъемной силы летательного аппарата   при внешнем подводе энергии, патент № 2488796 4,2.

Для ЛА с ПВРД на керосине Iспособ определения прироста подъемной силы летательного аппарата   при внешнем подводе энергии, патент № 2488796 1700 с. Тогда способ определения прироста подъемной силы летательного аппарата   при внешнем подводе энергии, патент № 2488796 вплоть до значений качества К=7.

Таким образом, при использовании способа решена важная задача: в результате ряда методических экспериментов в АДТ с разными газами-энергоносителями и разными массовыми расходами их найден и предложен критерий подобия способ определения прироста подъемной силы летательного аппарата   при внешнем подводе энергии, патент № 2488796 связывающий результаты измерения прироста подъемной силы на модели в АДТ с приростом ее в натурном полете ЛА при внешнем подводе энергии. Это открывает возможность поиска путей повышения аэродинамического качества ЛА за счет подвода внешней энергии к его модели в трубном эксперименте с последующим пересчетом полученных результатов на условия натурного полета. Проведенные эксперименты с использованием других газов: азота, кислорода и др. подтвердили универсальность предложенной зависимости.

Изобретение позволяет определить прирост подъемной силы натурного летательного аппарата при внешнем подводе энергии путем экспериментов на модели в аэродинамической трубе, что дает значительные преимущества по сравнению со способом получения такой информации методом исследований в натурном полете.

Класс G01M9/00 Аэродинамические испытания; устройства, связанные с аэродинамическими трубами

аэродинамическая труба -  патент 2526515 (20.08.2014)
способ создания потока газа в гиперзвуковой аэродинамической трубе и аэродинамическая труба -  патент 2526505 (20.08.2014)
стенд для определения вращательных производных аэродинамических сил и моментов модели в аэродинамической трубе -  патент 2522794 (20.07.2014)
способ теплового нагружения обтекателей ракет из неметаллических материалов -  патент 2517790 (27.05.2014)
симулятор свободного падения (варианты) и вентиляционное устройство для него -  патент 2516947 (20.05.2014)
устройство для оценки аэродинамического коэффициента и устройство для обнаружения отказа/повреждения управляющей поверхности -  патент 2515947 (20.05.2014)
стенд для определения вращательных производных аэродинамических сил и моментов модели в аэродинамической трубе -  патент 2515127 (10.05.2014)
устройство для управления гибкими стенками сопла аэродинамической трубы -  патент 2506556 (10.02.2014)
устройство для согласования приводных рядов гибких стенок сопла аэродинамической трубы -  патент 2506555 (10.02.2014)
способ управления гибкими стенками сопла аэродинамической трубы -  патент 2506554 (10.02.2014)
Наверх