способ определения параметров турбулентной атмосферы

Классы МПК:G01N21/41 преломляющая способность; свойства, влияющие на фазу, например длину оптического пути
G01W1/00 Метеорология
Автор(ы):, , ,
Патентообладатель(и):Федеральное казенное предприятие "Государственный лазерный полигон "Радуга" (RU)
Приоритеты:
подача заявки:
2011-10-31
публикация патента:

Изобретение относится к физике атмосферы и может быть использовано при определении структурной характеристики показателя преломления, параметра Штреля и радиуса Фрида. Экспресс-анализ проводят посредством оптической системы, которая содержит телескоп, сопряженной с ним видеокамеры и компьютера. Обрабатывают получаемые с видеокамеры изображения точечного (для данной апертуры) объекта, в каждый момент времени измеряют дрожание изображения относительно его среднего положения, обусловленные крупномасштабными турбулентными неоднородностями плотности воздуха. Далее вычисляют из этих измерений структурную характеристику показателя преломления, радиус Фрида и оптическую передаточную функцию атмосферы, а затем на основании полученных данных восстанавливают неискаженное изображение и вычисляют параметр Штреля как отношение соответствующих интенсивностей в центрах искаженного и неискаженного изображений точечного объекта. Изобретение позволяет проводить экспресс-анализ состояния турбулентной атмосферы в масштабе реального времени. 1 ил. способ определения параметров турбулентной атмосферы, патент № 2488095

способ определения параметров турбулентной атмосферы, патент № 2488095

Формула изобретения

Способ определения параметров турбулентной атмосферы, включающий в себя определение структурной характеристики показателя преломления, радиуса Фрида и параметра Штреля и состоящий в том, что используют адаптивную оптическую систему, сопряженную с компьютером, восстанавливающую искаженное турбулентной атмосферой изображение, регистрируют распределение интенсивности искаженного турбулентной атмосферой изображения, с его помощью определяют структурную характеристику показателя преломления, радиус Фрида и аппаратную функцию атмосферы между объектом и входной апертурой оптической системы, восстанавливают искаженное турбулентной атмосферой изображение, регистрируют распределение интенсивности восстановленного изображения и по полученным данным определяют параметр Штреля.

Описание изобретения к патенту

Изобретение относится к физике атмосферы и может быть использовано при определении таких ее параметров как структурная характеристика показателя преломления, параметр Штреля и радиус Фрида.

Известен способ определения внутреннего масштаба атмосферной турбулентности (радиус Фрида) [1], заключающийся в том, что регистрируют интенсивность прошедшего турбулентную атмосферу излучения, определяют дисперсию ее флуктуации, и после определения дисперсии флуктуации интенсивности определяют внутренний масштаб атмосферной турбулентности.

К недостаткам известного способа следует отнести значительную удаленность в пространстве приемной и передающей излучение аппаратуры (на расстояние порядка нескольких километров), что существенно ограничивает возможности оперативного изменения как направления, в котором проводятся измерения, так и протяженности исследуемой атмосферы.

Известен также способ [2], согласно которому пропускают импульсное лазерное излучение через турбулентную атмосферу, фильтруют излучение обратного рассеяния на мелкомасштабных неоднородностях, измеряют коэффициент усиления обратного рассеяния одиночных импульсов, с частотой следования, не превышающей частоты флуктуации турбулентной атмосферы. Затем определяют коэффициент усиления обратного рассеяния импульсного излучения усреднением коэффициентов обратного рассеяния одиночных импульсов и восстанавливают профиль структурной характеристики показателя преломления турбулентной атмосферы обратным преобразованием коэффициента усиления обратного рассеяния импульсного излучения.

Данный известный способ требует использования мощного лазерного источника излучения (в силу малого значения величины обратного рассеяния), что существенно ограничивает возможности его широкого применения, особенно на больших расстояниях (превышающих 1000 м).

Техническим результатом предполагаемого изобретения является проведение экспресс-анализа состояния турбулентной атмосферы в масштабе реального времени при одновременном включении в состав определяемых параметров турбулентной атмосферы помимо структурной характеристики показателя преломления радиуса Фрида и параметра Штреля.

Указанный технический результат достигается тем, что используют адаптивную оптическую систему, состоящую из телескопа, сопряженной с ним видеокамеры и компьютера, обрабатывающего получаемые с видеокамеры изображения точечного (для данной апертуры) объекта, регистрируют распределение интенсивности искаженного турбулентной атмосферой изображения, с его помощью определяют структурную характеристику показателя преломления, радиус Фрида и аппаратную функцию атмосферы между объектом и входной апертурой оптической системы, восстанавливают искаженное турбулентной атмосферой изображение, регистрируют распределение интенсивности восстановленного изображения и по полученным данным определяют параметр Штреля, как отношение соответствующих интенсивностей в центрах искаженного и неискаженного изображений точечного объекта.

Возможность достижения технического результата основывается на следующем. Атмосферные неоднородности показателя преломления можно разделить на две части по степени их влияния на изображение [3]. Крупномасштабные неоднородности (характерный размер которых больше, чем диаметр входной апертуры оптической системы) приводят к случайным смещениям изображения как целого (дрожанию). Мелкомасштабные неоднородности вызывают размытие мелких деталей изображения и ухудшение вследствие этого разрешающей способности. Разрешающая способность оптической системы из-за влияния атмосферных искажений не превосходит разрешающую способность оптической системы с апертурой, равной радиусу Фрида, величина которого вблизи подстилающей поверхности порядка нескольких сантиметров.

Как известно [4-6], структурная характеристика показателя преломления Cn способ определения параметров турбулентной атмосферы, патент № 2488095 2 выражается через дисперсию дрожаний (средний квадрат углового смещения центра тяжести изображения точечного объекта) способ определения параметров турбулентной атмосферы, патент № 2488095 2 следующим образом:

способ определения параметров турбулентной атмосферы, патент № 2488095

где 2R - диаметр приемной апертуры;

L - длина трассы наблюдения.

Радиус Фрида (r0) выражается через Cnспособ определения параметров турбулентной атмосферы, патент № 2488095 2 согласно [5, 6] как:

способ определения параметров турбулентной атмосферы, патент № 2488095

где k=2способ определения параметров турбулентной атмосферы, патент № 2488095 /способ определения параметров турбулентной атмосферы, патент № 2488095 - волновой вектор;

способ определения параметров турбулентной атмосферы, патент № 2488095 - длина волны излучения;

Мелкомасштабное расплывание усредненного изображения при условии, что дрожание устранено, определяется оптической передаточной функцией, зависящей от радиуса Фрида и диаметра входной апертуры оптической системы [7, 8]:

способ определения параметров турбулентной атмосферы, патент № 2488095

Здесь способ определения параметров турбулентной атмосферы, патент № 2488095 - угловая пространственная частота,

способ определения параметров турбулентной атмосферы, патент № 2488095 0=D/способ определения параметров турбулентной атмосферы, патент № 2488095 - частота обрезания спектра пространственных частот оптической системы, D - диаметр апертуры. Параметр способ определения параметров турбулентной атмосферы, патент № 2488095 принимает значение 1 для «ближнего поля» (когда существенны только фазовые эффекты) и значение 0,5 для «дальнего поля» (применимое, когда одинаково существенны и амплитудные и фазовые искажения).

На чертеже представлена схема системы экспресс-анализа состояния атмосферы, поясняющая сущность изобретения.

Посредством компьютерной программы сначала регистрируют дрожание изображения, вычисляют его дисперсию, параметры Cnспособ определения параметров турбулентной атмосферы, патент № 2488095 2 и r0, a также функцию H(способ определения параметров турбулентной атмосферы, патент № 2488095 ), затем корректируют дрожание, производят усреднение и цифровую фильтрацию с использованием выражения (4), устраняющую мелкомасштабное расплывание. В результате такой обработки получают исправленное (неискаженное) дифракционное изображение [9], и, сравнивая его с исходным, определяют параметр Штреля.

Литература

1. А.с. 1840633 СССР, МКИ4 G01W 1/00. Способ измерения внутреннего масштаба атмосферной турбулентности / П.А.Бакут, И.В.Безденежных, К.Н.Свиридов, Ю.П.Шумилов (СССР) - № 3183005/28; заявлено 28.10.1987; опубл. 27.06.2007.

2. А.с. № 1840481 СССР, МКИ3 G01S 17/95. Способ измерения структурной характеристики показателя преломления турбулентной атмосферы / П.А.Бакут А.Б.Александров, В.А.Логинов, В.П.Логинов, И.Н.Матвеев, Ю.П.Шумилов (СССР) - № 2220623/09; заявлено 08.06.1977; опубл. 27.03.2007.

3. Кандидов В.П., Чесноков С.С., Шленов С.А. // Оптика атмосферы и океана. - 11, 522 (1998).

4. Щеглов П.В. Проблемы оптической астрономии - М.: Наука, 1980.

5. Татарский В.И. Распространение волн в турбулентной атмосфере - М., Наука, 1967.

6. Гурвич А.С., Кон А.И., Миронов В.Л., Хмелевцов С.С. Лазерное излучение в турбулентной атмосфере - М.: Наука, 1976.

7. Гудмен Дж. Статистическая оптика - М.: Мир, 1988.

8. Fried D.L. J. Opt. Soc. Am. // 56, 1372 (1966).

9. Аверин А.П., Пряничников B.C., Тяпин В.В. Квантовая электроника // № 40, 5 (2010), С.418-420.

Класс G01N21/41 преломляющая способность; свойства, влияющие на фазу, например длину оптического пути

устройство измерения показателя преломления -  патент 2506568 (10.02.2014)
носитель для оптического детектирования в малых объемах образца -  патент 2502985 (27.12.2013)
способ измерения показателя преломления газовых сред -  патент 2495387 (10.10.2013)
оптическое устройство для измерения показателя преломления прозрачных твердых веществ малой толщины и небольших размеров методом параллельного смещения светового луча -  патент 2492449 (10.09.2013)
обнаружение нарушения фазы света, распространяющегося в оптическом волноводе -  патент 2464542 (20.10.2012)
способ бесконтактного определения времени жизни неравновесных носителей заряда в полупроводниках -  патент 2450387 (10.05.2012)
способ определения показателя преломления поверхностной электромагнитной волны инфракрасного диапазона -  патент 2419779 (27.05.2011)
устройство крепления и герметизации кварцевой кюветы в рефрактометрическом детекторе для жидкостной хроматографии -  патент 2362143 (20.07.2009)
способ просмотра и анализа результатов диагностики на основе дифракции -  патент 2321842 (10.04.2008)
видеорефрактометр -  патент 2315286 (20.01.2008)

Класс G01W1/00 Метеорология

способ определения колебания уровня моря -  патент 2526490 (20.08.2014)
способ определения балла облачности -  патент 2525625 (20.08.2014)
способ определения абсолютных энергетических характеристик дождя и система контроля для его осуществления -  патент 2525145 (10.08.2014)
способ определения зоны влияния продуктов токсичных выбросов свалок -  патент 2522719 (20.07.2014)
способ оценки экологического состояния атмосферы территории -  патент 2522161 (10.07.2014)
способ прогноза штормовых подъемов уровней воды для морских устьевых участков рек -  патент 2521216 (27.06.2014)
способ определения вертикального профиля концентрации газов в атмосфере -  патент 2510054 (20.03.2014)
способ оценки комфортности рабочей зоны по параметрам микроклимата -  патент 2509322 (10.03.2014)
способ обнаружения айсбергов -  патент 2506614 (10.02.2014)
способ пространственной количественной оценки уровня загрязнения атмосферного воздуха -  патент 2503042 (27.12.2013)
Наверх