способ комплексного телемониторинга подвижных объектов

Классы МПК:G08B26/00 Системы сигнализации, в которых центральная станция последовательно опрашивает подстанции
Автор(ы):,
Патентообладатель(и):Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Нижегородский государственный технический университет им. Р.Е. Алексеева" (НГТУ) (RU)
Приоритеты:
подача заявки:
2012-04-26
публикация патента:

Изобретение относится к системам сигнализации, реагирующим на несколько нежелательных или ненормальных условий, с последовательным обменом данными по радиоканалам связи через базовые станции, находящиеся между диспетчерским пунктом и подвижными объектами наблюдения, определяющими свое местоположение и состояние. Техническим результатом является повышение надежности и помехозащищенности связи при реализации функций телемониторинга. В способе осуществляют взаимную синхронизацию всех объектов, участвующих в телемониторинге, обеспечивают единую адресацию, известную всем участникам телемониторинга, и устанавливают на них приемники сигналов глобальных навигационных спутниковых систем, данные которых используют для определения местоположения объектов и формирования на них шкалы единого точного времени, используя методы частотного и временного доступа в среду распространения радиоволн. Отображают местонахождение и траекторию движения подвижного объекта, оценивая возможность попадания подвижного объекта в опасные районы. 5 ил. способ комплексного телемониторинга подвижных объектов, патент № 2487418

способ комплексного телемониторинга подвижных объектов, патент № 2487418 способ комплексного телемониторинга подвижных объектов, патент № 2487418 способ комплексного телемониторинга подвижных объектов, патент № 2487418 способ комплексного телемониторинга подвижных объектов, патент № 2487418 способ комплексного телемониторинга подвижных объектов, патент № 2487418

Формула изобретения

Способ комплексного телемониторинга подвижных объектов, заключающийся в том, что на все подвижные объекты устанавливают мониторы и подготавливают две базовые станции радионаблюдения с индивидуальными адресами, а также диспетчерский пункт, который соединяют каналом связи с одной базовой станцией, формируют сигналы на двух базовых станциях, и передают по радиоканалу в диспетчерский пункт, перед началом телемониторинга устанавливают базовые станции, диспетчерский пункт и мониторы, исходя из соответствующих факторов риска, выбирают тип датчиков состояния подвижного объекта и окружающей среды, устанавливают их на подвижные объекты и подключают к соответствующим мониторам, вводят в мониторы индивидуальные предельно допустимые параметры состояния подвижного объекта и окружающей среды, внешними средствами определяют координаты двух базовых станций на местности, в ходе телемониторинга при изменении количества и положения базовых станций координаты базовых станций отображают в диспетчерском пункте, периодически принимают в мониторы сигналы от датчиков состояния подвижного объекта и окружающей среды, запоминают их показания в виде сообщения - блока телеметрической информации - сравнивают с предельно допустимыми, при превышении или при поступлении соответствующего управляющего сигнала с диспетчерского пункта включают сигнал нештатной ситуации, поочередно выбирают мониторы и отображают их координаты в диспетчерском пункте, блок телеметрической информации выбранного монитора передают через базовую станцию в диспетчерский пункт, где его принимают, оценивают состояние выбранного подвижного объекта, отображают состояние подвижного объекта, при возникновении нештатной ситуации увеличивают частоту опроса соответствующего монитора, а также принимают меры для помощи подвижному объекту, отличающийся тем, что обе базовые станции устанавливают на летательные несущие платформы и перед началом телемониторинга их поднимают в воздух, в диспетчерском пункте, на мониторах подвижных объектов и базовых станциях после включения оборудования осуществляют взаимную синхронизацию всех объектов, участвующих в телемониторинге, обеспечивают единую адресацию, известную всем участникам телемониторинга, и устанавливают на них приемники сигналов глобальных навигационных спутниковых систем, данные которых используют для определения местоположения объектов и формирования на них шкалы единого точного времени, определяют для каждого подвижного объекта конкретный монитор, при расширении рабочей зоны увеличивают высоту подъема летательных несущих платформ, с помощью шкалы единого точного времени на базовых станциях формируют на разных частотах маркеры в разнесенные интервалы времени и выделяют слоты для приема/передачи данных с каждого на каждый мониторы подвижного объекта, по маркеру на мониторе подвижного объекта определяют время передачи данных на соответствующую базовую станцию - соседний монитор - или приема сообщений с нее или соседнего монитора, местоположение диспетчерского пункта, базовых станций, вызываемого подвижного объекта, в диспетчерском пункте по принятым с подвижного объекта сообщениям о его местоположении и параметрам движения отображают его местонахождение на карте местности, строят экстраполированную траекторию движения, оценивают возможность попадания выбранного подвижного объекта в опасный район, выдают через базовые станции рекомендации по преодолению нештатной ситуации, диспетчерский пункт соединяют каналом связи со второй базовой станцией, поочередно или в связи с обострившейся ситуацией с диспетчерского пункта выбирают подвижный объект и в заданный интервал времени через базовые станции организуют обмен данными с соответствующим монитором выбранного подвижного объекта, обеспечивают обмен данными между подвижными объектами как по принципу «каждый с каждым», так и через базовые станции, контролируют достоверность этого обмена на базовых станциях, а результаты контроля передают на диспетчерский пункт, для двунаправленной трансляции кодограмм по цепи «базовые станции - диспетчерский пункт» используют две частоты, для каждой базовой станции своя, а для разделения направлений обмена информацией по цепи «базовые станции - диспетчерский пункт» - временной доступ в радиосеть, формализуют фразы, необходимые для работы подвижным объектам, переводят их в цифровые сообщения, записывают в память вычислительных средств мониторов и диспетчерского пункта, при необходимости нужное сообщение выводят из памяти вычислительных средств мониторов или диспетчерского пункта и с признаком выбранного подвижного объекта после преобразования в радиосигнал на двух частотах излучают в эфир, в базовых станциях после оценки правильности приема сообщений осуществляют преобразование формата данных, принятых на диспетчерском пункте, в формат данных, необходимый для организации радиосети «базовые станции - подвижные объекты», или выполнение обратной процедуры, формирование двух соответствующих радиосигналов и излучение в эфир, при приеме радиосигналов монитором или на диспетчерском пункте и преобразовании их в видеосигналы выбирают из двух принятых сообщений наиболее достоверное, дешифрируют его и при совпадении принятого адреса с адресом подвижного объекта выводят информацию на соответствующий экран для визуального съема или при посылке формализованного речевого сообщения - для звукового воспроизведения.

Описание изобретения к патенту

Изобретение относится к системам сигнализации, реагирующим на несколько нежелательных или ненормальных событий, с последовательным обменом данными по радиоканалам связи через базовые станции, находящиеся между диспетчерским пунктом и подвижными объектами (ПО) наблюдения, определяющими свое местоположение и состояние.

Заявляемый способ предназначен для обеспечения непрерывного самоконтроля и дистанционного персонифицированного наблюдения состояния подвижных объектов относительно диспетчерского пункта и окружающей их среды, передачи сведений о них по радиоканалам связи через две базовые станции на диспетчерский пункт, а также определения их местоположения в рабочей зоне с отображением результатов на диспетчерском пункте.

Способ может быть использован для наблюдения за персоналом, действующим в условиях повышенного риска, например подразделений МЧС, действующих в условиях ликвидации последствий природных и техногенных катастроф, групп силовых структур, выполняющих специальные операции, а также при стихийных бедствиях, техногенных катастрофах, тушении пожаров, горноспасательных операциях и т.п. Использование заявляемого способа позволяет подвижным объектам связываться друг с другом, непрерывно осуществлять самоконтроль параметров своего состояния и параметров окружающей среды, передавать эти сведения по радиоканалам связи через две базовые станции на диспетчерский пункт, а в диспетчерском пункте контролировать эти параметры и при необходимости передавать на подвижные объекты рекомендации о дальнейших действиях с учетом местоположения подвижных объектов. Результаты мониторинга позволяют оперативно оценивать сложившуюся ситуацию, принимать меры по оказанию помощи персоналу, эвакуации его и т.п., а за счет этого повысить выживаемость людей в экстремальных условиях.

Во всех рассмотренных выше случаях проблема дистанционного наблюдения за подвижными объектами распадается на решение следующих задач:

идентификационную, заключающуюся в выборе определенного подвижного объекта среди множества подобных и организации обмена данными с ним;

навигационную, заключающуюся в определении местоположения выбранного объекта, направления, скорости движения и экстраполяции местонахождения объекта через заданный интервал времени;

телеметрическую, состоящую в дистанционном измерении параметров состояния выбранного объекта и окружающей его среды, передачу их через две базовые станции на диспетчерский пункт для анализа и при необходимости трансляции через две базовые станции на подвижные объекты рекомендации об их дальнейших действиях;

управляющую, заключающуюся в возможности влиять на существующую обстановку, и действия, выполняемые подвижными объектами;

информационную, заключающуюся в обеспечении с диспетчерского пункта подвижного объекта необходимыми данными и организации радиосвязи между подвижными объектами по принципу «каждый с каждым» как через две базовые станции, так и напрямую.

Определим термины, содержащиеся в названии изобретения.

Подвижный объект - объект, изменяющий свое положение относительно диспетчерского пункта.

Мониторинг - наблюдение за состоянием окружающей среды (атмосферы, гидросферы, техногенных систем) с целью контроля, прогноза и охраны (Большой энциклопедический словарь. М.,1999).

Под телемониторингом будем понимать дистанционное решение задач мониторинга разнесенных в пространстве подвижных объектов.

Комплексный телемониторинг означает одновременное наблюдение в рабочей зоне за несколькими параметрами подвижных объектов и окружающей среды, в определяющей степени характеризующими их состояние, и вынесение по полученным данным соответствующего решения с диспетчерского пункта.

Особенности задачи, решаемой заявляемым способом, состоят в следующем.

1. Подвижный характер объектов наблюдения, базовых станций и диспетчерского пункта предполагает использование беспроводных радиоканалов связи.

2. Необходимость идентификации десятков-сотен объектов с их датчиками делает ее более сложной по сравнению с наблюдением за летательными аппаратами и другими транспортными средствами.

3. Неопределенность зоны наблюдения, состояния, конкретного местоположения и траектории движения объектов наблюдения.

4. Необходимость дистанционного контроля с диспетчерского пункта и самоконтроля состояния каждого подвижного объекта, причем параметры состояния более сложны, чем в случае охранной сигнализации, где состояние оценивается по правилу "открыто - закрыто".

5. Необходимость контроля состояния среды, окружающей конкретный объект наблюдения. Для окружающей среды характерны те же сложности параметров состояния, что и в предыдущем случае.

6. Необходимость непрерывной реализации операции по пунктам 4 и 5 в течение неопределенного заранее промежутка времени.

7. Необходимость автономной оценки объектом наблюдения собственного состояния и состояния окружающей среды, постоянной передачи этих данных в диспетчерский пункт.

8. Необходимость централизованной оценки на диспетчерском пункте обстановки в рабочей зоне и при необходимости предупреждения объектов наблюдения об опасных участках.

9. Необходимость непрерывного контроля на диспетчерском пункте технического состояния специального оборудования системы телемониторинга: мониторов объектов наблюдения, базовых станций и диспетчерского пункта; вынесение решения о восстановлении оборудования в случае выхода его из строя.

Все перечисленные задачи необходимо решать комплексно и оперативно во всей рабочей зоне.

Известен "Способ наблюдения за транспортными средствами на маршруте движения" [1], заключающийся в том, что задают маршрут движения, номер и плановые текущие координаты подвижного транспортного средства на маршруте, принимают подвижным транспортным средством навигационные сигналы от глобальной спутниковой системы радионавигации, выделяют из принятых навигационных сигналов информацию о действительных текущих координатах подвижного транспортного средства, информацию о подвижном транспортном средстве преобразуют в электрический сигнал и периодически передают через систему сотовой связи в информационно-аналитический центр, где информацию принимают, обрабатывают, хранят и отображают, сравнивают действительные текущие координаты подвижного транспортного средства с плановыми, а при возникновении нештатной ситуации отображают на электронной карте местности текущие и заданные координаты этого подвижного транспортного средства, при наличии сигнального сообщения отображают также смысловое содержание, время передачи сигнального сообщения и номер транспортного средства, на основе анализа полученной информации принимают решение об оперативных действиях.

Недостатком способа является узкий класс решаемых задач и ограниченная область использования. Первый недостаток связан с тем, что наблюдению подвергается практически только маршрут движения транспортного средства и небольшое количество сигнальных сообщений, вводимых водителем вручную. Зоны возможного применения такого способа ограничены областями достижимости системы сотовой связи.

Известен "Способ определения координат подвижных объектов и устройство для его осуществления" [2], заключающийся в том, что задают рабочую зону, на все подвижные объекты устанавливают мониторы и, по крайней мере, три базовые станции m3 радионаблюдения с индивидуальными адресами Ak,, а также диспетчерский пункт, который соединяют каналом связи с одной базовой станцией - центральной (j=1), для зондирования излучают последовательно радиосигналы адреса и прямой измерительный, измерительные сигналы дальности формируют не менее чем на двух базовых станциях и передают по радиоканалу в центральную базовую станцию, а затем по каналу связи в диспетчерский пункт, где вычисляют координаты соответствующих объектов. Данный способ предназначен для обеспечения охраны подвижных объектов с использованием радиоканала с возможностью определения их координат при нападении или несанкционированном проникновении. Способ предполагает наличие на подвижном объекте монитора (абонентского сигнализатора), который в нештатной ситуации связывается по радиоканалу с базовыми станциями, сообщая свой адрес и вырабатывая измерительный сигнал.

Недостатками данного способа являются отсутствие возможности организации радиосвязи между подвижными объектами по принципу «каждый с каждым» как через базовые станции, так и напрямую, низкая помехозащищенность, надежность мониторинга и узкий класс решаемых задач. Низкая надежность обусловлена тем, что данный способ основан на асинхронном способе взаимодействия монитора на подвижном объекте и базовых станций, т.е. обмен информацией начинается только при возникновении нештатной ситуации, либо при контрольном вызове диспетчерского пункта объектом наблюдения при проверке работы системы. В остальное время все элементы пассивны и не взаимодействуют друг с другом. При таком способе, например, выход подвижного объекта из зоны досягаемости или повреждение (отключение) монитора остается незаметным. Узкий класс решаемых задач, во-первых, связан с тем, что информационная посылка от монитора содержит лишь ограниченный круг сообщений, содержащих адресную, навигационную и сигнальную ("нападение", "контроль", "вызов скорой помощи" и т.п.), поэтому в диспетчерском пункте формируется ограниченный круг сообщений. Во-вторых, данный способ предполагает стационарное размещение базовых станций и стационарных сигнализаторов с известными и не меняющимися координатами на местности, что не позволяет решать задачу мониторинга оперативно.

Наиболее близким к заявляемому является «Способ комплексного телемониторинга подвижных объектов» [3], который и выбран за прототип. Он заключается в том, что задают рабочую зону на все подвижные объекты, устанавливают мониторы и, по крайней мере, три базовые станции m3, радионаблюдения с индивидуальными адресами Ak, а также диспетчерский пункт, который соединяют каналом связи с одной базовой станцией - центральной (j=1), для зондирования излучают радиосигналы адреса, управляющий и прямой измерительный, измерительные сигналы дальности формируют не менее чем на двух базовых станциях, и передают по радиоканалу в центральную базовую станцию, а затем по каналу связи в диспетчерский пункт, где вычисляют координаты соответствующих объектов. Перед началом телемониторинга задают рабочую зону, устанавливают базовые станции, диспетчерский пункт и мониторы исходя из соответствующих факторов риска, выбирают тип датчиков состояния подвижного объекта и окружающей среды, устанавливают их на подвижные объекты и подключают к соответствующим мониторам, вводят в мониторы индивидуальные предельно допустимые параметры состояния подвижного объекта и окружающей среды, внешними средствами определяют координаты одной базовой станции, а также координаты или азимут другой базовой станции на местности, в ходе телемониторинга при изменении количества и положения базовых станций поочередно выбирают и по команде с диспетчерского пункта в центральную базовую станцию зондируют базовые станции, координаты базовых станций отображают в диспетчерском пункте, периодически принимают в мониторы сигналы от датчиков состояния подвижного объекта и окружающей среды, запоминают их показания в виде блока телеметрической информации и сравнивают с предельно допустимыми, при превышении или при поступлении соответствующего управляющего сигнала включают сигнал нештатной ситуации, поочередно выбирают и по команде с диспетчерского пункта в центральную базовую станцию зондируют мониторы. Координаты мониторов отображают в диспетчерском пункте. По окончании зондирования передают блок телеметрической информации выбранного монитора через центральную базовую станцию в диспетчерский пункт, где его принимают, оценивают состояние выбранного подвижного объекта, отображают состояние подвижного объекта, при возникновении нештатной ситуации увеличивают частоту выбора соответствующего монитора, а также принимают меры для помощи подвижному объекту.

Зондирование выбранного объекта - базовой станции или монитора проводят с центральной базовой станции, при этом последовательно излучают радиосигналы адреса выбранного объекта Ak, управляющий и прямой измерительный с одинаковым для всех объектов параметром Q в выбранном объекте, у которого поступивший адрес Ak совпал с собственным адресом. Затем дешифрируют управляющий сигнал и используют для задания режима работы выбранного объекта, принимают прямой, формируют и излучают ответный измерительный радиосигнал с параметром F, отличным от параметра Q радиосигнала, излученного с центральной базовой станции. В каждой невыбранной базовой станции принимают прямой и ответный измерительные радиосигналы, обрабатывают, формируют измерительный сигнал дальности между ней и выбранным объектом.

Однако способу присущи недостатки:

рабочая зона телемониторинга ограничена в самом начале работы зоной прямой видимости с наземных базовых станций, подвижных объектов и диспетчерского пункта на вызываемые абоненты и сокращается при наличии углов закрытия на трассе распространения радиоволн. Учитывая то, что если эти объекты подвижные, то в процессе работы они могут выйти за пределы этой зоны, и тогда будут недоступны для обслуживания с диспетчерского пункта;

при передаче обработанных измерительных сигналов от невыбранных базовых станций в центральную может возникнуть конфликт из-за одновременной передачи информации от нескольких базовых станций;

необходимо постоянное вычисление азимута и дальности базовых станций от диспетчерского пункта, однако погрешность измерения этих величин велика

из-за влияния отражений оцениваемых радиосигналов от местных предметов и вероятностного характера задержки информации при ретрансляции сообщений;

при выходе из строя оборудования центральной базовой станции телемониторинг не обеспечивается;

отсутствует обмен данными между подвижными объектами по принципу «каждый с каждым» и режим передачи голосовых сообщений;

низкая надежность и помехозащищенность радиосвязи при реализации функций телемониторинга из-за передачи всей собранной с подвижного объекта информации в диспетчерский пункт через центральную базовую станцию по одному радиоканалу на одной частоте.

Решаемая задача - совершенствование известного способа телемониторинга.

Технический результат заключается в расширении функциональных возможностей в части упрощения алгоритмов работы и проводимых мероприятий, повышения надежности и помехозащищенности связи при реализации функций телемониторинга.

Под упрощением алгоритмов работы и проводимых мероприятий понимается сведение процедур телемониторинга к выполнению известных операций с помощью типового (серийного) оборудования, уменьшение числа базовых станций, отсутствие необходимости определения дальности и азимута до базовых станций, возможность реализации диспетчерского пункта на подвижном шасси и обеспечения обмена данными между подвижными объектами по принципу «каждый с каждым», в том числе при передаче формализованных голосовых сообщений.

Под повышением надежности и помехозащищенности связи понимается резервирование радиоканалов съема данных с мониторов подвижных объектов на разных частотах и в различные интервалы времени за счет использования двух базовых станций и передачи этих данных на диспетчерский пункт по двум параллельным каналам на разных частотах, приема и выделения наиболее достоверного сообщения для его отображения и анализа.

Технический результат достигается тем, что в способе комплексного телемониторинга подвижных объектов, заключающемся в том, что на все подвижные объекты устанавливают мониторы и подготавливают две базовые станции радионаблюдения с индивидуальными адресами, а также диспетчерский пункт, который соединяют каналом связи с одной базовой станцией, формируют сигналы на двух базовых станциях и передают по радиоканалу в диспетчерский пункт, перед началом телемониторинга устанавливают базовые станции, диспетчерский пункт и мониторы исходя из соответствующих факторов риска, выбирают тип датчиков состояния подвижного объекта и окружающей среды, устанавливают их на подвижные объекты и подключают к соответствующим мониторам, вводят в мониторы индивидуальные предельно допустимые параметры состояния подвижного объекта и окружающей среды, внешними средствами определяют координаты двух базовых станций на местности, в ходе телемониторинга при изменении количества и положения базовых станций координаты базовых станций отображают в диспетчерском пункте, периодически принимают в мониторы сигналы от датчиков состояния подвижного объекта и окружающей среды, запоминают их показания в виде сообщения (блока телеметрической информации) и сравнивают с предельно допустимыми, при превышении или при поступлении соответствующего управляющего сигнала с диспетчерского пункта включают сигнал нештатной ситуации, поочередно выбирают мониторы и отображают их координаты в диспетчерском пункте, блок телеметрической информации выбранного монитора передают через базовую станцию в диспетчерский пункт, где его принимают, оценивают состояние выбранного подвижного объекта, отображают состояние подвижного объекта, при возникновении нештатной ситуации увеличивают частоту опроса соответствующего монитора, а также принимают меры для помощи подвижному объекту, обе базовые станции устанавливают на летательные несущие платформы и перед началом телемониторинга их поднимают в воздух, в диспетчерском пункте, на мониторах подвижных объектов и базовых станциях после включения оборудования осуществляют взаимную синхронизацию мониторов всех объектов, участвующих в телемониторинге, обеспечивают единую адресацию, известную всем участникам телемониторинга, и устанавливают на них приемники сигналов глобальных навигационных спутниковых систем, данные которых используют для определения местоположения объектов и формирования на них шкалы единого точного времени, определяют для каждого подвижного объекта конкретный монитор, при расширении рабочей зоны увеличивают высоту подъема летательных несущих платформ, с помощью шкалы единого точного времени на базовых станциях формируют на разных частотах маркеры в разнесенные интервалы времени и выделяют слоты для приема/передачи данных с каждого (на каждый) монитор подвижного объекта, по маркеру на мониторе подвижного объекта определяют время передачи данных на соответствующую базовую станцию (соседний монитор) или приема сообщений с нее (соседнего монитора), местоположение диспетчерского пункта, базовых станций, вызываемого подвижного объекта, в диспетчерском пункте по принятым с подвижного объекта сообщениям о его местоположении и параметрам движения отображают его местонахождение на карте местности, строят экстраполированную траекторию движения, оценивают возможность попадания выбранного подвижного объекта в опасный район, выдают через базовые станции рекомендации по преодолению нештатной ситуации, диспетчерский пункт соединяют каналом связи со второй базовой станцией, поочередно или в связи с обострившейся ситуацией с диспетчерского пункта выбирают подвижный объект и в заданный интервал времени через базовые станции организуют обмен данными с соответствующим монитором выбранного подвижного объекта, обеспечивают обмен данными между подвижными объектами как по принципу «каждый с каждым», так и через базовые станции, контролируют достоверность этого обмена на базовых станциях, а результаты контроля передают на диспетчерский пункт, для двунаправленной трансляции кодограмм по цепи «базовые станции - диспетчерский пункт» используют две частоты, для каждой базовой станции своя, а для разделения направлений обмена информацией по цепи «базовые станции - диспетчерский пункт» - временной доступ в радиосеть, формализуют фразы, необходимые подвижным объектам для работы, переводят их в цифровые сообщения, записывают в память вычислительных средств мониторов и диспетчерского пункта, при необходимости нужное сообщение выводят из памяти вычислительных средств мониторов или диспетчерского пункта и с признаком выбранного подвижного объекта после преобразования в радиосигнал на двух частотах излучают в эфир, в базовых станциях после оценки правильности приема сообщений осуществляют преобразования формата данных, принятого на диспетчерском пункте, в формат данных, необходимый для организации радиосети «базовые станции - подвижные объекты» или выполнение обратной процедуры, формирование двух соответствующих радиосигналов и излучение в эфир, при приеме радиосигналов на мониторе или диспетчерском пункте и преобразовании их в видеосигналы выбирают из двух принятых сообщений наиболее достоверное, дешифрируют его и при совпадении принятого адреса с адресом ПО выводят информацию на соответствующий экран для визуального съема или - при посылке формализованного речевого сообщения - для звукового воспроизведения.

Обоснование технического результата:

- мобильность базовых станций, диспетчерского пункта и подвижных объектов с мониторами связана с назначением предлагаемого способа и априорной неопределенностью условий их функционирования (факторов риска), необходимостью организации связи с подвижными объектами, находящимися в радиотени за крупными местными предметами и в складках местности;

- ввод в мониторы индивидуальных предельно допустимых параметров состояния подвижного объекта и окружающей среды при установке или через базовую станцию по радиоканалу позволяет иметь в памяти монитора показатели условий, соответствующие реальным условиям применения, с учетом типа использующихся датчиков и их динамических характеристик, а также с учетом индивидуальных свойств подвижного объекта;

- определение координат подвижных объектов, базовых станций и диспетчерского пункта обеспечивается с помощью высокоточной координатной информации с выхода соответствующих приемников глобальных навигационных спутниковых систем, например, типа ГЛОНАСС или NAVSTAR;

- периодический прием в мониторы сигналов от датчиков состояния подвижного объекта и окружающей среды и запоминание их показаний в мониторе в виде сообщения - блока телеметрической информации позволяет непрерывно с точностью до времени кадра и активно (по инициативе монитора) осуществлять как контроль параметров состояния самого объекта, так и окружающей среды, т.е. проводить комплексный мониторинг и осуществлять обмен данными с соседними подвижными объектами по принципу «каждый с каждым». Блок телеметрической информации может содержать информацию о текущих показаниях датчиков состояния подвижного объекта и окружающей среды, а также местоположения и параметры движения монитора и т.п.;

- сравнение в мониторе результатов оценки показаний датчиков состояния с предельно допустимыми величинами и включение сигнала нештатной ситуации как непосредственно, так и через базовые станции с диспетчерского пункта, придает монитору определенный "интеллект", что позволяет объекту наблюдения не тратить время и силы на наблюдение за соответствующими датчиками и измерителями, непосредственно на месте действий оценить сложившуюся ситуацию, в том числе и по параметрам состояния, неощутимым для подвижного объекта, и принять рекомендуемые диспетчерским пунктом меры;

- оценка принимаемых от подвижного объекта радиосигналов в базовой станции позволяет определить его работоспособность - отсутствие радиосигнала в заданном слоте или некоторые показания датчиков могут расцениваться в диспетчерском пункте как "нештатная ситуация" с соответствующей реакцией;

- передача блока телеметрической информации выбранного монитора, хранящегося в его памяти, через базовую станцию в диспетчерский пункт, оценка и отображение позволяют непрерывно контролировать состояние подвижных объектов и окружающей их среды в интересах службы спасения, оказания помощи подвижным объектам, предупреждения населения и т.п. В известных аналогах сигнальные сообщения от мониторов сами по себе являются свидетельствами нештатной ситуации, но не позволяют качественно оценить реальные события, случившиеся с объектом и вокруг него.

Заявляемый способ иллюстрируется чертежами.

Фиг.1 - структурная схема устройства, обеспечивающего заявляемый способ телемониторинга подвижных объектов;

фиг.2 - структурная схема монитора подвижного объекта с датчиками;

фиг.3 - структурная схема базовой станции;

фиг.4 - структурная схема диспетчерского пункта;

фиг.5 - один из вариантов структуры кадра, предназначенного для обмена данными.

Структурные схемы включают в себя следующие элементы: 1 - рабочая зона; 2 - базовые станции; 3 - диспетчерский пункт; 4 - подвижные объекты с мониторами; 5 - датчики состояния подвижных объектов, 6 - датчики состояния среды, окружающей подвижные объекты; 7 - коммутатор датчиков состояния подвижных объектов; 8 - аналого-цифровой преобразователь (АЦП); 9 - процессор монитора; 10 - первый передатчик монитора с антенной; 11 - первый приемник монитора с антенной; 12 - второй передатчик монитора с антенной; 13 - второй приемник монитора с антенной; 14 - сигнализатор нештатной ситуации; 15 - канал ввода данных монитора; 16 - приемник сигналов глобальных навигационных спутниковых систем; 17 - дисплей монитора; 18 - первый передатчик базовой станции с антенной; 19 - второй передатчик базовой станции с антенной; 20 - первый приемник базовой станции с антенной; 21 - второй приемник базовой станции с антенной; 22 -клавиатура монитора; 23 - процессор базовой станции; 24 - канал ввода данных базовой станции; 25 - процессор диспетчерского пункта; 26 - первый передатчик диспетчерского пункта с антенной; 27 - второй передатчик диспетчерского пункта с антенной; 28 - первый приемник диспетчерского пункта с антенной; 29 - второй приемник диспетчерского пункта с антенной; 30 - схема сигнализации; 31 - дисплей диспетчерского пункта; 32 - клавиатура диспетчерского пункта; 33 - канал входа /выхода данных; 34 - звуковоспроизводящая схема; 35 - канал входа/выхода для подключения дополнительных рабочих мест (при необходимости); 1-й, 2-йспособ комплексного телемониторинга подвижных объектов, патент № 2487418 n-й - временные слоты (ячейки) кадра; а, бспособ комплексного телемониторинга подвижных объектов, патент № 2487418 з - временные интервалы слотов, используемые для передачи различной информации.

Реализация заявляемого способа сводится к следующему.

Оперативно перед началом телемониторинга исходя из факторов риска, размера охватываемой территории, на которой предполагается нахождение подвижных объектов, мощности передатчиков, чувствительности приемников, длительности непрерывной работы и других факторов, устанавливают две базовые станции БС21 и БС22 на соответствующее количество летательных несущих платформ: вертолетов или самолетов. В диспетчерском пункте 3 на мониторах подвижных объектов 4 и базовых станциях 2 устанавливают приемники 16 сигналов глобальных навигационных спутниковых систем. После включения оборудования с помощью меток точного времени с выходов приемников 16 сигналов глобальных навигационных спутниковых систем, например ГЛОНАСС, осуществляют взаимную синхронизацию оборудования всех объектов, участвующих в телемониторинге, обеспечивают единую адресацию, известную всем участникам телемониторинга.

Затем две базовые станции БС21 и БС22 на соответствующих летательных несущих платформах поднимают в воздух. Высоту подъема определяют таким образом, чтобы обеспечить через две базовые станции 2 устойчивую радиосвязь с подвижными объектами 4 на местности, превышающей размер рабочей зоны 1 с учетом препятствий и возвышенностей на пути распространения радиоволн. Если длительность телемониторинга превышает максимально возможное время пребывания в воздухе летательных несущих платформ, то на смену им подготавливают следующие две - также с базовыми станциями 2. До окончания полета первой пары летательных несущих платформ подготавливают операцию «хэндофф» (handoffs) [4]. На диспетчерский пункт 3 возлагают обязанность управлять передачами сигналов связи в пределах рабочей зоны 1, определяющей местонахождение подвижных объектов. Передача и прием данных диспетчерским пунктом 3 и базовой станцией 2 дежурной летательной несущей платформы, как правило, не должны осуществляться до тех пор, пока не закончится заданное время полета основной платформы на необходимой (для обеспечения устойчивой связи) высоте и меняющая его платформа не выйдет на маршрут, новая базовая станция 2 не установит связь со всеми подвижными объектами, что должно быть подтверждено с нее специальной квитанцией, и вычислительные средства диспетчерского пункта 3 не определят качество всех каналов, например, по требуемым уровням отношения сигнал/шум. Соответствующие квитанции и знаки, характеризующие выполнение указанных операций, отображаются на экране дисплея 31 рабочего места диспетчерского пункта.

После того как выполнены эти операции, диспетчерский пункт 3 инициирует процедуру handoffs и устанавливает новую линию связи с новой базовой станцией 2, отключая старую. Обе базовые станции 2 должны продолжать обеспечивать обмен данными с подвижными объектами до тех пор, пока не появится индикация, подтверждающая успешное установление нового соединения. Если диспетчерский пункт 3 принимает решение, что параметры системы приемлемы для обеспечения связи, то новое подключение считается успешным. Любую последующую связь «земля-воздух-земля» осуществляют по новой виртуальной цепи (VC), а старую VC временно используют только для приема, практически до посадки летательной несущей платформы. И такие операции продолжают до окончания работ. Маршрут барражирования платформы выбирают из условия обеспечения устойчивой радиосвязи во время полета со всеми мониторами подвижных объектов 4 в рабочей зоне, например по кругу.

В диспетчерском пункте 3 на мониторах подвижных объектов 4 и базовых станциях 2 используют выходную информацию приемников 16 сигналов глобальных навигационных спутниковых систем для определения местоположения объектов и формирования шкалы единого точного времени и слотов (временных интервалов), в каждом из которых обеспечивается передача и прием данных для каждого абонента, участвующего в телемониторинге.

Диспетчерский пункт 3 обеспечивает обмен пакетами данных через бортовую базовую станцию 2 с мониторами наземных подвижных объектов 4 следующим образом:

- с помощью шкалы единого точного времени на базовых станциях 2 формируют на разных частотах маркеры в разнесенные интервалы времени и выделяют слоты для приема/передачи данных с каждого (на каждый) монитора подвижного объекта 4;

- по маркеру, передаваемому в первом слоте, на мониторе подвижного объекта 4 определяют время передачи данных на соответствующую базовую станцию 2 (соседний монитор) или приема сообщений с нее (соседнего монитора), местоположение диспетчерского пункта 3, базовых станций 2, монитора вызываемого подвижного объекта 4;

- для обеспечения заданного уровня надежности связи в зоне ответственности каждой БС 2 из общего списка частот ДП 3 назначают для каждой БС одну из набора активных частот связи, оптимальную по условиям распространения радиоволн и электромагнитной совместимости;

- ДП 3 доводит назначенный набор частот вместе с интервалом времени его активизации в рабочей зоне до каждой из двух рабочих и дежурных БС 2 через радиоканалы связи;

- время использования каждого частотного канала разбивают на временные кадры, а каждый кадр делится на n временных слотов. Длительность кадра определяется допустимой скоростью передачи данных в заданном радиоканале связи при требуемой достоверности и максимальным числом ПО, равным (n-m), где m - число слотов, отведенных для обмена данными между базовым станциями 2 и мониторами ПО 4 в режиме широковещания. При возрастании объема снимаемой с ПО 4 информации, например, при передаче изображения по командам с ДП 3 обмен данными в направлениях БС21 -ДП, БС22-ДП организуют практически в реальном масштабе времени.

Для исключения коллизий при обмене данными между двумя мониторами подвижных объектов 4 непосредственно предусмотрена следующая процедура: передачу данных на монитор адресуемого подвижного объекта 4 через БС 2 осуществляют только в следующем кадре после получения соответствующего запроса связи и в том случае, если отсутствовал обмен данными между этими абонентами в предыдущем кадре.

В процессе обмена данными пакетное сообщение от монитора ПО 4 для диспетчерского пункта 3, содержащее адрес получателя и адрес отправителя, информацию с датчиков о местоположении ПО и другие упаковывают в процессоре 9 подвижного объекта в пакет, предназначенный для передачи по радиоканалу, затем передают по радиоканалу через БС 2 на ДП 3, на котором зарегистрированы все мониторы ПО 4 в рабочей зоне 1. На ДП 3 принятое сообщение обрабатывают, при необходимости отображают и выносят решения, требующие от ПО проведения срочных действий.

В обратном направлении пакетное сообщение от диспетчерского пункта 3, содержащее адрес получателя - (идентификатор монитора ПО 4), а также адрес отправителя (ДП) и соответствующую команду управления, упаковывают в пакет, предназначенный для передачи по радиоканалу, и затем передают по радиоканалу через БС 2 к монитору адресата. С монитора сообщение визуально (с экрана) или в речевой форме, например, сформированной в вокодере, с помощью звукопроводящей схемы 34 доводится до подвижного объекта.

В случае возникновения неисправности интерфейса между одной из БС 2 и ПО 4, вторая БС 2 передает широковещательно в маркере для всех зарегистрированных на ней ПО 4 команду на смену частоты связи с кодом причины «неисправность». Затем прекращается обмен пакетными данными через радиоканалы между БС 2 с неисправным интерфейсом, зарегистрированными на ней подвижными объектами, и диспетчерским пунктом, до момента устранения неисправности. Отключение неисправной БС 2 не снижает качество обслуживания ПО 4, поскольку каждая из БС 2 рассчитана на обслуживание всех ПО 4 в рабочей зоне. При работе одной БС 2 процедура обмена данными по цепи «БС-ПО» аналогична используемой при работе с соответствующей базовой станцией планшетного компьютера типа «iPad-3g» [5], например стандарта WiFi (беспроводной широкополосный доступ, который основан на стандарте IEEE 802.11).

В диспетчерском пункте 3 по принятым с монитора подвижного объекта 4 сообщениям о его местоположении и параметрам движения отображают его местонахождение на карте местности, строят экстраполированную траекторию движения, оценивают возможность попадания выбранного подвижного объекта опасный район, выдают конкретному ПО через базовые станции 2 необходимые рекомендации по преодолению нештатной ситуации.

Для повышения надежности связи и помехозащищенности диспетчерский пункт 3 соединяют со второй базовой станцией 2 радиоканалом, работающим на частоте, отличной от частоты радиоканала связи диспетчерского пункта 3 с первой базовой станцией 2. Учитывая, что обе базовые станции 2 осуществляют опрос мониторов ПО 4 (состояния их датчиков) на разных частотах, базовые станции 2 имеют свои радиоканалы с диспетчерским пунктом 3 также на разных несущих частотах, то очевидно, что организуются два параллельных радиоканала, транслирующих одинаковую информацию.

Поочередно в относительно спокойной обстановке или в связи с обострившейся ситуацией с диспетчерского пункта 3, например с достижением измеренных датчиком значений предельных величин, выбирают соответствующий подвижный объект 4 или группу объектов и через базовые станции 2 параллельно в заданные интервалы времени увеличивают частоту обмена данными с соответствующим монитором выбранного подвижного объекта 4. Для повышения оперативности обмен данными в заданные интервалы времени между подвижными объектами 4 обеспечивают по принципу «каждый с каждым». Процесс этого обмена контролируют на базовых станциях 2, а результаты контроля передают на диспетчерский пункт 3. Если из-за рельефа местности невозможно организовать обмен данными между подвижными объектами, то эту процедуру осуществляют через поднятые над землей на соответствующую высоту две базовые станции 2 на летательных несущих платформах.

Индивидуальные адреса всех абонентов телемониторинга могут быть заложены в память процессоров 9, 23, 25 при их изготовлении или вводиться с диспетчерского пункта 3 через радиоканалы связи и две базовые станции 2 в мониторы подвижных объектов 4. Перед началом телемониторинга определяют для каждого подвижного объекта конкретный монитор, все ПО 4 с помощью сигналов приемников 16 глобальных навигационных спутниковых систем, являющихся одним из датчиков ПО 4, определяют свои координаты, устанавливают единое системное время путем приема маркеров с первой и второй базовых станций 2, осуществляют взаимную синхронизацию и подготовку к обмену данными. Число слотов - интервалов времени, отведенных для обмена данными, выбирается на два больше, чем число подвижных объектов, чтобы исключить влияние радиосигналов маркеров, которые передаются с одной из БС 2 в первом слоте, на процесс обмена данными второй базовой станции 2 с подвижными объектами 4. То же для первой базовой станции. Этим и разносом по частоте и по времени радиоканалов связи обеспечивают исключение коллизий при одновременной работе двух БС 2. Обмен сообщениями между базовыми станциями 2 через диспетчерский пункт 3 позволяет осуществить телемониторинг ПО 4 за счет создания обходных путей отказавшего оборудования. С помощью процессора 23 БС обеспечивают также контроль работоспособности оборудования базовой станции и всех мониторов ПО 4, а также передачу данных о них в диспетчерский пункт 3.

Оперативно перед началом телемониторинга диспетчерский пункт 3 соединяют радиоканалами связи с двумя равноправными базовыми станциями 2. Равноправность базовых станций 2 заключается в том, что в них в памяти их процессоров 23 сосредотачивают одинаковую информацию о подвижных объектах, которая при потере в одной из них может быть обновлена с базы данных другой через радиоканалы связи и диспетчерский пункт 3. Благодаря постоянному обмену данными между базовыми станциями 2, в памяти их процессоров 23 хранят одинаковую информацию о всех параметрах подвижных объектов 4, что необходимо для повышения надежности оборудования.

Оперативно перед началом телемониторинга на все подвижные объекты 4 устанавливают мониторы. Исходя из соответствующих факторов риска выбирают тип датчиков 5, 6 состояния подвижного объекта и окружающей среды, устанавливают их на подвижные объекты 4 и подключают к соответствующим мониторам. Если объектами наблюдения являются люди, то в качестве датчиков 5 состояния могут выступать датчики температуры, пульса и других наиболее важных физиологических параметров человека. Датчики 6 состояния окружающей среды используют для оценки обстановки, окружающей подвижный объект. В качестве них могут использоваться датчики тех физических величин, которые наиболее важны в условиях данной рабочей зоны, например датчики температуры (при пожарах), датчики уровня радиации (при авариях на ядерных установках), газоанализаторы (при аномальных ситуациях на химических предприятиях) и т.п.

Рассмотрим более подробно процесс обмена данными между диспетчерским пунктом 3 и выбранным объектом (базовой станцией 2 или монитором подвижного объекта 4). Для повышения помехозащищенности применяют методы частотного и временного доступа к среде распространения радиосигналов. Каждому направлению обмена данными: ПО - БС21, ПО - БС22, БС21 - ДП, БС22 - ДП выделяют разные рабочие частоты, а для обмена данными - каждому монитору ПО 4 персональный временной интервал. С диспетчерского пункта 3 в обе базовые станции 2 (фиг.1) поступает команда запроса данных о выбранном объекте. В базовых станциях 2, если данные запрашиваются не о них, формируют кадр запроса данных (фиг.5). Первый слот кадра - маркер - несет информацию о точном системном времени (фиг.5, а), рабочей частоте на следующий кадр (фиг.5, б), широковещательную информацию для всех ПО (фиг.5, в), темп съема данных с датчиков (фиг.5, г), тип датчика (фиг.5, д). Команду преобразуют в сообщение с соответствующей подвижному объекту адресной частью и в заданный интервал времени, также соответствующий выбранному подвижному объекту, последовательно излучают радиосигналы адреса выбранного объекта и данные запроса. При формировании сообщений используют известные методы помехоустойчивого кодирования [4]. Слот для обмена данными разбивают на несколько временных интервалов: для передачи на БС - (фиг.5, ж), для приема на мониторе - (фиг.5, з), для защиты от наложения передаваемых на принимаемые сообщения - (фиг.5, е). Длительность кадра определяется числом обслуживаемых ПО, технической скоростью передачи данных и максимальным числом символов, отводимых для передачи местоположения ПО и показаний его датчиков. Например, при наличии 100 ПО, 40 разрядов, отводимых для передачи широты и долготы ПО, 20 разрядов, отводимых для передачи типа датчика и его показаний, скорости передачи 31,5 кбит/с, характерной для режима VDL-2 в системе управления воздушным движением [4], время кадра с учетом двойной избыточности за счет кодирования и без учета защитных интервалов составит около 0,8 с. В этом случае объем изменяемого информационного пространства, используемого для телемониторинга ПО, можно оценить как 2 20. Величина защитных интервалов (фиг.5, е) по длительности выбирается большей, чем время прохождения радиосигналом до наиболее удаленного ПО и обратно с учетом времени задержки в ПО и времени на прослушивание несущей радиосообщения в эфире на базовых станциях. В базовых станциях 2 на основании известного собственного местоположения и всех ПО оценивается уровень мощности запросных радиосигналов на ПО: чем ближе ПО к БС, тем меньше уровень передаваемого радиосигнала (адаптация по мощности).

Во всех мониторах подвижных объектов 4 принимают сообщения в выделенных им слотах и дешифрируют адресный сигнал. При совпадении поступившего кода адреса с собственным адресом он включается в работу. Выбранный объект принимает запросное сообщение, которое определяет режим его работы. При этом монитор выбранного подвижного объекта 4 с помощью процессора 9 монитора подвижного объекта переходит в режим излучения на двух частотах (для каждой из двух БС) кодированного сообщения о своем местоположении и информации с запрашиваемого датчика в строго отведенном для него слоте. В базовых станциях 2 эти радиосигналы принимают, обрабатывают с оценкой их достоверности и по параллельным каналам связи с привязкой к времени приема сообщения передают на диспетчерский пункт 3, где после соответствующей обработки отображают отметки от ПО с привязкой к электронной карте местности и выводят данные с датчика. В случае превышения предельных параметров у ПО 4, на ДП 3 включают сигнализацию (схема 30), например визуальную на дисплее или звуковую, и через базовые станции 2 передают на соответствующий ПО 4 предупреждение о нештатной ситуации или перечень необходимых мероприятий. Темп обмена данными задает диспетчерский пункт 3 и он может меняться в зависимости от состояния ПО 4. На диспетчерском пункте 3 по сообщениям о местоположении с двух базовых станций 2 обеспечивают их непрерывное сопровождение, контроль работоспособности и топливного ресурса летательных несущих платформ. При выходе из строя одной БС 2 телемониторинг ПО 4 осуществляют с помощью второй базовой станции. При снижении уровня топлива на летательных несущих платформах через соответствующую БС 2 информируют диспетчерский пункт о необходимости подъема в воздух следующей платформы. Базовые станции работают в автоматическом режиме. При необходимости и наличии на борту летательной несущей платформы оператора обеспечивают подключение к процессору клавиатуры и дисплея по стандартной схеме.

В мониторы подвижных объектов вводят индивидуальные предельно допустимые параметры состояния подвижного объекта и окружающей среды. Если подвижными объектами являются люди, то для каждого из них существуют разные предельно допустимые параметры собственного состояния и состояния окружающей среды, с учетом опыта, физиологических особенностей организма, важности решаемой задачи (в особо важных случаях задача должна быть решена вне зависимости от условий). Сигналы с датчиков 5 и 6 снимают и передают с монитора подвижного объекта 4 в эфир дискретно во времени, например, с интервалом 5, 10, 20 секунд и т.д. или в соответствии с запросом с ДП 3, в зависимости от важности параметра для ПО или окружающей среды. Периодически принимают в мониторы подвижных объектов сигналы от датчиков состояния подвижного объекта 5 и окружающей среды 6, запоминают их показания в мониторе и сравнивают с предельно допустимыми, при превышении включают на мониторе автономно сигнализатор нештатной ситуации 14. Такая сигнализация может срабатывать при превышении параметрами собственного состояния подвижного объекта 4 или внешних условий предельно допустимых уровней, введенных перед началом работ, и позволяет объекту наблюдения (человеку) получить звуковое, световое и т.п. предупреждение о возникновении опасной ситуации, в том числе и в случаях, когда опасность неощутима для него, например, в случае радиационного облучения. Сигнализация о нештатной ситуации подвижного объекта 4 может включаться и принудительно по управляющему сигналу, поступившему с диспетчерского пункта 3 через базовые станции 2. Это позволяет организовать канал управления с диспетчерского пункта 3 через базовые станции 2 к выбранному подвижному объекту 4. Мониторы могут быть выполнены по принципу носимого планшетного компьютера типа «iPad» [5], объединяющего в своем составе процессор, монитор, клавиатуру, средства радиосвязи с базовой станцией, сигнализации и формирования звуковых сигналов, аккумулятор.

Рассмотрим возможности технической реализации заявляемого способа на типовом (серийном) оборудовании.

Подвижные объекты 4 приступают к работе в рабочей зоне 1. Процессор 9 монитора подвижного объекта периодически и поочередно через коммутатор 7 подключает датчики 5 и 6 к аналого-цифровому преобразователю 8, считывает их показания и запоминает в виде сообщения - блока телеметрической информации. Схема монитора подвижного объекта 4 с датчиками приведена на фиг.2.

Датчики 5 состояния подвижного объекта предназначены для преобразования параметров состояния абонента в электрические сигналы. В качестве датчиков могут выступать термоэлектрические преобразователи (терморезисторы, термотранзисторы), приемники биоэлектрических сигналов и т.п., снабженные соответствующими усилительными и согласующими устройствами, а также соединительными проводами.

Датчики 6 состояния среды, окружающей ПО 4, предназначены для преобразования соответствующих параметров в электрические сигналы. В зависимости от задач мониторинга выбор параметров зависит от факторов риска рабочей зоны 1. Для измерения этих параметров состояния окружающей среды в качестве датчиков могут выступать термоэлектрические преобразователи (терморезисторы, термотранзисторы), фотоэлектрические преобразователи (фоторезисторы, фототранзисторы), газоанализаторы, дозиметры и т.п., снабженные соответствующими усилительными и согласующими устройствами, а также соединительными проводами.

Коммутатор 7 датчиков предназначен для последовательного опроса датчиков 5 и 6. Коммутатор имеет сигнальные входы по числу датчиков 5 и 6 и адресные входы от процессора 9 монитора подвижного объекта, по которым происходит выбор опрашиваемого датчика. Выход коммутатора датчиков 7 соединен с входом аналого-цифрового преобразователя 8.

Аналого-цифровой преобразователь 8 предназначен для преобразования сигналов с выходов датчиков 5 и 6 в цифровую форму и может быть реализован в виде соответствующего АЦП на серийной интегральной микросхеме.

Процессор 9 монитора подвижного объекта предназначен для обработки и хранения предельно допустимых параметров состояния подвижного объекта и окружающей среды, проведения операций: последовательного опроса датчиков 5 и 6, сравнения их показаний с предельно допустимыми, выработки сигнала нештатной ситуации, дешифрации адреса и содержания запросного сообщения, кодирования/де-кодирования данных, управления работой приемопередающей части монитора, формирования временных интервалов передачи/приема сообщений кадра, контроля работоспособности монитора и выработки соответствующей квитанции «по событию» (при появлении неисправности). Процессор 9 может быть выполнен в виде носимого планшетного компьютера типа «iPad» с соответствующим программным обеспечением. Все блоки, подключаются к процессору через порты ввода-вывода, которые представляют собой адресуемые регистры, управляемые процессором 9 с помощью стандартных процедур.

Передатчики 10 и 12 монитора подвижного объекта с антеннами предназначены для передачи радиосигналов с частотами несущих f1 и f2 от монитора подвижного объекта на базовые станции БС21 и БС22. В качестве передатчика может использоваться, например, передатчик частотно-модулированных сигналов.

Приемники 11 и 13 монитора подвижного объекта с антеннами предназначены для приема радиосигналов с частотами несущих f1 и f2 от соответствующих базовых станций БС21 и БС22. В качестве приемников может использоваться, например, приемник частотно-модулированных сигналов. Антенна у приемников может быть общая.

Сигнализатор нештатной ситуации 14 предназначен для выработки звукового сигнала автономно в случае превышения допустимых параметров состояния ПО или окружающей среды, а также по команде с диспетчерского пункта 3, поступившей в виде управляющего сигнала. Сигнализатор управляется от процессора 9 монитора подвижного объекта.

Канал 15 предназначен для ввода в процессор монитора исходных данных в заводских условиях или в процессе коррекции данных при подготовке к телемониторингу. В качестве таких данных выступают предельно допустимые параметры состояния подвижного объекта 4 и окружающей среды, адрес монитора или подвижного объекта и другие. Канал 15 может быть выполнен, например, в виде последовательного интерфейса связи ПЭВМ с процессором 9 монитора подвижного объекта.

Приемник 16 сигналов глобальных навигационных спутниковых систем с антенной подключен к входу процессора 9. С помощью высокоточных меток времени приемника 16 обеспечивают в процессоре 9 формирование всех слотов кадра, двух интервалов передачи и двух интервалов приема радиосигналов в каждом из кадров. Только в этих интервалах времени в каждом мониторе осуществляют соответственно передачу и прием радиосигналов. Кроме того, приемник служит для определения точного местоположения подвижного объекта в реальном масштабе времени. Приемник может быть реализован на серийном устройстве марки «Jupiter» или на основе технологии Assisted-GPS, используемой носимом планшетном компьютере типа «iPad» [6].

Дисплей 17 и клавиатура 22 монитора подвижного объекта предназначены для формирования запросных сообщений и адреса вызываемого абонента, а также для отображения принятых данных при визуальном съеме. Дисплей 17 и клавиатура 22 могут быть выполнены, например, на основе носимого планшетного компьютера типа «iPad».

Звуковоспроизводящая схема 34 может быть выполнена программно по принципу вокодера.

Схема базовой станции 2 приведена на фиг.3. С целью унификации базовые станции 2 могут быть выполнены по единой схеме, а их функции изменяться путем передачи с диспетчерского пункта 3 соответствующих сообщений.

Передатчики 18 и 19 базовой станции с антеннами предназначены для формирования и передачи радиосигналов от базовой станции к мониторам подвижных объектов 4 на несущих частотах f1 или f2 и на диспетчерский пункт 3 - на несущих частотах f3 или f4 в зависимости от номера базовой станции. В качестве передатчика может использоваться, например, передатчик частотно-модулированных сигналов.

Приемники 20 и 21 базовой станции с антеннами предназначены для приема радиосигналов от ДП 3 и мониторов 4 с несущими частотами f3 или f4 и f1 или f2 соответственно. В качестве приемника может использоваться, например, приемник частотно-модулированных сигналов. Антенны приемников в базовых станциях могут быть совмещены.

Процессор 23 базовой станции предназначен для выполнения операций: приема адресного и запросного сообщения, оценки их достоверности и дешифрации, приема телеметрической информации от мониторов, преобразования форматов передаваемых и принимаемых данных, а также для управления приемопередающей аппаратурой и контроля работоспособности базовой станции 2. Процессор 23 базовой станции может быть выполнен в виде ЭВМ, устанавливаемой на борту летательного аппарата, например ЭВМ «Багет-55» с соответствующим программным обеспечением. Все блоки подключаются к процессору 23 через порты ввода-вывода, которые представляют собой адресуемые регистры, управляемые им.

Канал 24 предназначен для ввода в базовую станцию (процессор 23) исходных данных для обеспечения взаимодействия с диспетчерским пунктом 3 и подвижными объектами 4. В качестве исходных данных могут выступать адрес базовой станции 2, режим ее работы и другие. Канал ввода данных 24 может быть выполнен, например, в виде последовательного интерфейса RS-232С.

Диспетчерский пункт 3 (фиг.4) предназначен для управления всей системой мониторинга, обработки и отображения информации. Диспетчерский пункт 3 может быть реализован в виде одного или нескольких рабочих мест, собранных, например, на персональных ЭВМ с соответствующим программным обеспечением, двумя передатчиками и двумя приемниками радиоканалов связи двух базовых станций.

Рассмотрим работу одного из вариантов устройства, реализующего заявляемый способ.

Перед началом мониторинга выбирают тип и количество датчиков 5 и 6 и подключают их к мониторам. Устанавливают мониторы на подвижных объектах 4. Если не хватает данных, введенных в заводских условиях, производят ввод дополнительных параметров в мониторы подвижных объектов 4, базовые станции 2 и диспетчерский пункт 3 через каналы 15, 24 и 33 соответственно, например, с помощью одного из мониторов подвижного объекта с заложенной предварительно в него программой. В базовых станциях с помощью процессора 23 переводят средства радиосвязи (первый и второй передатчики 18,19, первый и второй приемники 20, 21) в рабочее состояние, формируют две временных шкалы кадров обмена данными с разнесенными во времени маркерами и на несущих частотах f1 и f2 излучают маркеры. Для обмена данными с ДП и обеспечения требований электромагнитной совместимости на базовых станциях 2 подключают средства радиосвязи 18 и 21 с несущими частотами f3 для БС 21 и f4 - для БС 22.

На мониторах подвижных объектов 4 с датчиками состояния ПО и окружающей среды 5 и 6, выбранными исходя из факторов риска рабочей зоны 1, принимаются маркеры на несущих частотах f1 и f2. Затем во всех мониторах ПО формируют сообщения об их местоположении и с определенных заранее датчиков состояния 5 и 6 и в соответствующих интервалах передачи слота, выделенного для данного ПО, в двух временных шкалах на несущих частотах f1 и f2 излучают радиосигналы. На базовых станциях 2 на несущих частотах f1 или f2 соответственно в определенных заранее интервалах времени принимают радиосигналы, декодируют их, проверяют достоверность, по номеру слота, адресной части и приоритетности сообщения определяют маршрут дальнейшей передачи: на другой монитор ПО 4 или на ДП 3. При получении первых сообщений с датчиков состояния 5 и 6 подвижных объектов 4 и анализа их на ДП 3 осуществляют ориентированный запрос данных с датчиков 5 и 6 тех ПО 4, которые находятся в наиболее напряженной обстановке, посылая им через базовые станции 2 соответствующие запросы.

Приемники 21 двух базовых станций 2 преобразуют эти радиосигналы в видеосигналы, которые обрабатывают далее в процессорах 23 для определения их достоверности. С помощью тех же процессоров 23 формируют на каждой из двух БС две временные шкалы кадров обмена данными с разнесенными во времени интервалами передачи данных. В случае приема с ДП 3 достоверных данных на их основе формируют сообщение в соответствующем интервале передачи и на несущих частотах f1 или f2 (в зависимости от номера базовой станции БС 21 или БС 22 ) излучают радиосигналы в эфир.

Первый и второй приемники 11 13 мониторов подвижных объектов 4 преобразуют эти радиосигналы в видеосигналы, которые обрабатываются далее в процессорах 9 для определения их достоверности и проведения дальнейших операций. При совпадении поступившего адреса с собственным адресом монитора подвижного объекта 4 его процессор 9 выбирает из двух принятых сообщений наиболее достоверное и дешифрирует его (или управляющий сигнал с ДП 3). Если поступившее сообщение оказывается формализованной посылкой, представляющей в цифровой форме стандартную (для данной ситуации) фразу, то с помощью звуковоспроизводящей схемы 34 восстанавливается запросное сообщение выбранному подвижному объекту, набранное с помощью клавиатуры 32 из «Меню» на экране дисплея 31 диспетчерского пункта 3. В ответ на запрос с помощью процессора 9, коммутатора 7 и АЦП 8 ПО снимают показания соответствующего датчика состояния 5 или 6, формируют требуемое сообщение и во временной интервал передачи, характерный для выбранного ПО, излучают первым и вторым передатчиками 10 и 12 ПО 4 радиосигналы на частотах f1 и f2. На базовых станциях 2 эти радиосигналы принимают приемниками 20. Далее в процессорах 23 БС2 определяют достоверность сообщения и в случае правильного приема формируют сообщение для передачи через передатчики 18 с антеннами на ДП 3 на частотах f3 с БС 21 и f4 с БС 22. На диспетчерском пункте приемниками 28 и 29 с антеннами принимают эти радиосигналы и затем обрабатывают в процессоре 25 ДП 3. При большом числе ПО 4 или сложной ситуации в рабочей зоне 1 количество рабочих мест, состоящих из процессора 25, клавиатуры 32, дисплея 31 и звуковоспроизводящей схемы 34, на диспетчерском пункте 3 может быть увеличено с помощью канала входа/выхода 35, построенного, например, по протоколу «Ethernet». Процессор 25 ДП 3 выбирает из двух принятых сообщений наиболее достоверное, дешифрирует его и выводит его на экран дисплея 31 ДП 3 для визуального съема или на звуковоспроизводящую схему 34 (при наборе с помощью клавиатуры 22 на дисплее 17 монитора ПО 4 формализованного запросного сообщения на диспетчерский пункт 3). При необходимости на дисплее 31 ДП 3 отображают номер выбранного монитора ПО 4, его координаты, а также телеметрическую информацию. Поступившие в диспетчерский пункт 3 показания датчиков состояния 5 и 6 сравнивают с предельно допустимыми. По результатам сравнения принимаются соответствующие меры. Если оба принятых сообщения недостоверны, то с ДП 3 повторяют запрос.

Кроме частотного доступа в направления «БС21-ДП» и «БС22-ДП» организуют и временной доступ в радиосеть, например, 90% времени с помощью процессоров 23 БС и 25 ДП выделяют для передачи данных с базовых станций 2 на ДП 3, а 10% - в обратном направлении. Синхронизация этого процесса обеспечивается с помощью высокостабильных меток времени с выхода приемника 16 сигналов глобальных навигационных спутниковых систем. Периодически на диспетчерский пункт 3 с мониторов ПО 4 в отведенных для них слотах передают записанные в процессорах 9 ПО 4 наиболее важные сообщения с датчиков ПО 4 через первый и второй передатчики 10 и 12 с антеннами.

Преимущества заявляемого способа комплексного телемониторинга подвижных

1. Комплексный автоматический телемониторинг подвижных объектов с определением их точного местоположения, параметров окружающей среды и состояния самого подвижного объекта независимо от рельефа местности с помощью высокоподнятых на летательных несущих платформах двух базовых станций.

2. Оперативное решение задач телемониторинга с быстрым развертыванием базовых станций и коррекцией их маршрута полета, изменением типа, количества и местоположения датчиков состояния окружающей среды и подвижного объекта, с учетом возможности быстрого увеличения контролируемых параметров состояния подвижного объекта в ходе мониторинга.

3. Автономное функционирование мониторов с информированием подвижного объекта о возникновении нештатной ситуации и организации связи между подвижными объектами по принципу «каждый с каждым».

4. Возможность решения задач мониторинга местности в условиях неопределенности, а также оказания оперативной помощи подвижным объектам в нештатных ситуациях.

5. Сравнительно низкая стоимость технической реализации способа с помощью известных аппаратных решений благодаря унификации оборудования диспетчерского пункта, базовых станций и мониторов.

На момент подачи заявки разработаны алгоритмы функционирования, а также часть программного обеспечения заявляемого способа.

Источники информации

1. Патент РФ № 2157565, М.кл. G08G 1/123, G08G 1/127, G08G 1/01, Н04В 7/26, 2000.

2. Патент РФ № 2106694, М.кл. G08B 25/00, 1998.

3. Патент РФ № 2216047, М.кл. G08B 26/30, 2003 (прототип).

4. Б.И.Кузьмин «Сети и системы цифровой электросвязи», часть 1 «Концепция ИКАО CNS/ATM. Москва - Санкт-Петербург: - ОАО «НИИЭР», 1999. - 206 с.

5. file://http://images.yandex.ru/yandsearch? Ipad 3g img_url=filearchive.cnews.ru.

6. file://localhost/G:/DeepApple·Вся правда о GPS в планшетнике iPad.mht.

Класс G08B26/00 Системы сигнализации, в которых центральная станция последовательно опрашивает подстанции

система отслеживания мобильного тега, способ и устройство представления информации -  патент 2516232 (20.05.2014)
система охранной сигнализации -  патент 2447513 (10.04.2012)
способ и устройство обнаружения нарушителя для охраны периметров -  патент 2371776 (27.10.2009)
устройство охранной сигнализации объектов электросвязи -  патент 2322697 (20.04.2008)
система определения местонахождения подвижных объектов -  патент 2302698 (10.07.2007)
способ и система для контроля и сигнализации об изменении положения охраняемых объектов -  патент 2290698 (27.12.2006)
приемо-передающий модуль управления, обработки информационных данных и сигнализации для локальных компьютерных сетей -  патент 2286604 (27.10.2006)
система охраны помещения -  патент 2277724 (10.06.2006)
способ комплексного телемониторинга подвижных объектов -  патент 2216047 (10.11.2003)
способ и устройство для автоматического присвоения адресов извещателей в оповестительном аварийном устройстве -  патент 2214000 (10.10.2003)
Наверх