способ получения имплантированного ионами олова кварцевого стекла

Классы МПК:C23C14/48 ионное внедрение
Автор(ы):, , ,
Патентообладатель(и):Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" (RU)
Приоритеты:
подача заявки:
2011-11-17
публикация патента:

Изобретение относится к способу получения имплантированного ионами олова кварцевого стекла из диоксида кремния с поверхностным слоем, содержащим нанокластеры олова. Упомянутый способ может быть использован при создании компонентов микро-(нано-) и оптоэлектронных устройств. Проводят имплантацию ионов олова в кварцевое стекло и отжиг имплантированного ионами олова кварцевого стекла в воздушной атмосфере. Имплантацию ионов олова проводят в импульсном режиме при длительности импульсов 0,3-0,4 мс, частоте повторения импульсов 12,5-20 Гц, импульсной плотности ионного тока 0,8-0,9 мА/см 2, дозе облучения (4,5-5)×1016 ион/см 2, энергии ионов олова 30-35 кэВ и температуре диоксида кремния 60-350°С. Отжиг проводят при температуре 800-900°С в течение 50-70 мин в воздушной атмосфере. Обеспечивается получение стекла с повышенным уровнем интенсивности излучения в ближней области инфракрасного диапазона. 2 ил., 1 табл., 3 пр. способ получения имплантированного ионами олова кварцевого стекла, патент № 2486282

способ получения имплантированного ионами олова кварцевого стекла, патент № 2486282 способ получения имплантированного ионами олова кварцевого стекла, патент № 2486282

Формула изобретения

Способ получения имплантированного ионами олова кварцевого стекла из диоксида кремния с поверхностным слоем, содержащим нанокластеры олова, включающий имплантацию ионов олова в кварцевое стекло и отжиг имплантированного ионами олова кварцевого стекла в воздушной атмосфере, отличающийся тем, что имплантацию ионов олова проводят в импульсном режиме при длительности импульсов 0,3-0,4 мс, частоте повторения импульсов 12,5-20 Гц, импульсной плотности ионного тока 0,8-0,9 мА/см2, дозе облучения (4,5-5)·1016 ион/см2, энергии ионов олова 30-35 кэВ и температуре диоксида кремния 60-350°С, а отжиг проводят при температуре 800-900°С в течение 50-70 мин.

Описание изобретения к патенту

Изобретение относится к кварцевым стеклам, имплантированным ионами олова, и может быть использовано при создании компонентов микро-(нано-) и оптоэлектронных устройств, в частности микроминиатюрных источников света для планарных тонкопленочных волноводных систем и оптических интегральных схем.

Известен легированный оловом материал, представляющий собой основу из кремния с поверхностной пленкой, включающей диоксид кремния и ионы олова [Физика и техника полупроводников, 2007, т.41, в.4, стр.467-470]. Материал содержит две фазы - основу из кремния и пленку из диоксида кремния с оловом. Получен путем выращивания пленки на основе из кремния, с последующей имплантацией в диоксид кремния ионов олова в непрерывном режиме облучения, с последующим отжигом полученного материала при температуре 700÷1100°С в течение одного часа в сухом азоте. При возбуждении пучком электронов (катодолюминесценция) материал имеет три ярко выраженных максимума излучения с относительно низкой интенсивностью (Фиг.1). Один максимум расположен в полосе видимого спектра (400 нм или 3,1 эВ) и вызывается дефектами решетки диоксида кремния, обусловленными влиянием имплантируемых ионов олова. Другой максимум, расположенный в коротковолновой (ближней) области инфракрасного диапазона (760 нм или 1,63 эВ, вблизи границы видимого и инфракрасного диапазонов), имеет меньшую амплитуду, предположительно обусловлен возникшими в результате имплантации нанокластерами олова. Имеется третий максимум излучения пониженной интенсивности в полосе видимого спектра 530 нм (2,34 эВ). Таким образом, энергия возбуждаемого излучения известного материала распределена между тремя полосами, две из которых принадлежат видимой области спектра, а одна находится на границе видимого и инфракрасного диапазонов. При этом максимальная интенсивность излучения в видимой области (длина волны 400 нм) по амплитуде в четыре с половиной раза выше максимальной интенсивности излучения на границе видимого и инфракрасного диапазонов. Энергия излучения известного материала рассредоточена по видимому спектру и ближней области инфракрасного спектра с преобладанием излучения в видимой области.

Недостатком материала является пониженная интенсивность излучения, особенно в ближней области инфракрасного диапазона, что не соответствует требованиям при создании нового поколения приборов оптоэлектроники и фотоники с повышенной степенью интеграции светоизлучающих компонентов, в частности при разработке эффективных микроминиатюрных источников света для планарных тонкопленочных волн сводных систем с соответствующей областью прозрачности.

Известно также легированное оловом кварцевое стекло, представляющее собой основу из аморфного диоксида кремния с поверхностным слоем, состоящим из диоксида кремния и ионов олова в виде металлических кристаллитов (нанокластеров) с размерами 4÷20 нм [Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms Volume 91, Issues 1-4, 1 June, 1994, Pages 515-519]. Материал получен путем имплантации в диоксид кремния ионов олова с энергией 400 кэВ, дозой 2×1017 ион/см2 при комнатной температуре в непрерывном режиме облучения. Материал является однофазной системой, включающей основу из диоксида кремния и поверхностный слой из диоксида кремния с нанокластерами олова.

Недостатком этого материала является низкая интенсивность излучения в ближней области инфракрасного диапазона (700-800 нм или 1,55÷1,77 эВ).

Наиболее близким к предлагаемому стеклу является имплантированное оловом кварцевое стекло, представляющее собой основу из диоксида кремния с поверхностным слоем, состоящим из диоксида кремния, ионов олова в виде металлических кристаллитов (нанокластеров) и нанокластеров оксида олова [Journal of applied physics, 2007, 102, 024315]. Этот материал получен путем имплантации в диоксид кремния ионов олова с энергией 50 кэВ, дозой 2×1016 ион/см 2 при комнатной температуре, с последующим отжигом в азоте при температуре 650°С, после чего осуществлен отжиг в воздухе при температурах 400, 600, 800 и 1000°С. Материал является однофазной системой, включающей основу из диоксида кремния и поверхностный слой из диоксида кремния с нанокластерами олова и нанокластерами оксида олова.

Недостатком прототипа является низкая интенсивность излучения в ближней области инфракрасного диапазона (700÷800 нм или 1,55÷1,77 эВ).

Задачей изобретения является создание способа, обеспечивающего получение материала с повышенной интенсивностью излучения в ближней области инфракрасного диапазона (700÷800 нм или 1,55÷1,77 эВ).

Для решения указанной задачи способ получения имплантированного ионами оловом кварцевого стекла из диоксида кремния с поверхностным слоем, содержащим нанокластеры олова, включающий имплантацию ионов олова в кварцевое стекло и отжиг имплантированного ионами олова кварцевого стекла в воздушной атмосфере, отличается тем, что имплантацию ионов олова проводят в импульсном режиме при длительности импульсов 0,3÷0,4 мс, частоте повторения импульсов 12,5÷20 Гц, импульсной плотности ионного тока 0,8÷0,9 мА/см2, дозе облучения (4,5÷5)×10 16 ион/см2, энергии ионов олова 30÷35 кэВ и температуре диоксида кремния 60÷350°С, а отжиг проводят при температуре 800÷900°С в течение 50÷70 мин.

При фотовозбуждении полученное предложенным способом кварцевое стекло имеет излучение в двух полосах спектра (фиг.2). Одной из них является полоса пониженной интенсивности с максимумом 496 нм (2,5 эВ), связанная с дефектами решетки оксида кремния, вызванными влиянием имплантированных ионов олова. Кроме того, полученное кварцевое стекло имеет излучение увеличенной интенсивности в полосе 751 нм (1,65 эВ), вызванное нанокластерами олова, образовавшимися в матрице диоксида кремния.

Таким образом, энергия возбуждаемого излучения полученного материала распределена между двумя полосами, одна из которых принадлежит видимой области спектра, а другая находится в ближней области инфракрасного диапазона. Интенсивность излучения в ближней области инфракрасного диапазона по амплитуде в восемь раз больше интенсивности излучения в видимой области. Следовательно, энергия излучения полученного материала сосредоточена в основном в ближней области инфракрасного диапазона.

Увеличенный уровень интенсивности излучения в ближней области инфракрасного диапазона является новым, неожиданным техническим результатом изобретения. При использовании полученного предложенным способом материала обеспечивается, в частности, повышение эффективности работы микроминиатюрных источников света для планарных тонкопленочных волноводных систем с вышеуказанной полосой прозрачности (700÷800 нм или 1,55÷1,77 эВ).

На фиг.1 и 2 изображены спектры излучения известного и предложенного материалов. По вертикальным осям отложены интенсивности излучения в относительных единицах (отн.ед.), по горизонтальным - длины волн излучения (нм).

Фиг.1 - спектр излучения материала, представляющего собой основу из кремния с поверхностной пленкой, включающей диоксид кремния и ионы олова [Физика и техника полупроводников, 2007, т.41, в.4, стр.469, Figure 2 (SiO2:Sn+)]. Вертикальными пунктирными линиями обозначены три спектральные полосы с максимумами излучения на длинах волн 400 нм, 530 нм и 760 нм.

Фиг.2 - спектр излучения предложенного материала, представляющего собой основу из диоксида кремния с поверхностным слоем, включающим нанокластеры олова. Вертикальными пунктирными линиями обозначены две спектральные полосы с максимумами излучения на длинах волн 496 нм и 751 нм.

В таблице приведены режимы импульсного облучения ионами олова основы из диоксида кремния, режимы отжига и интенсивности излучения полученных образцов предложенного кварцевого стекла (1, 2, 3).

Таблица
№ образцаДлительность и частота повторения импульсов Импульсная плотность ионного тока и энергия ионов Доза облучения и температура диоксида кремния Температура и время отжига Интенсивность излучения на длине волны 751 нм
способ получения имплантированного ионами олова кварцевого стекла, патент № 2486282 (мс; Гц) (мА/см2; кэВ)(ион/см 2; °С) (°С; мин)(отн.ед.)
1 0,35; 170,85; 33 4,7×l016 ; 200870; 60 7850
20,3; 12,5 0,8; 30 4,5×l016; 60 850; 506510
3 0,4; 200,9; 35 5×l016 ; 350900; 70 6730

Имплантация ионов олова в кварцевое стекло SiO2 осуществлялась с помощью ионного источника, работающего в импульсном режиме при указанных в таблице параметрах и вакууме (1,4÷2,5)×10-4 Торр. Перед имплантацией вакуум-камера ионного источника откачивалась турбомолекулярным насосом до давления 3×10-5 Торр. Для удаления примесей катода проводилась предварительная имплантация в течение нескольких минут в экран, установленный перед анодом. В качестве катода использовалось гранулированное олово чистотой 99,6%, в качестве анода - образцы аморфного кварцевого стекла типа КУ. Перед облучением образцы кварцевого стекла промыты в спирте в ультразвуковой ванне.

Отжиг производился в воздушной атмосфере с использованием электропечи сопротивления (типа НТ 40/16).

Полученные образцы кварцевого стекла представляют собой плоскопараллельные пластины площадью 1 см2, толщиной 3 мм, с поверхностью оптического качества. Поверхностный слой каждого образца включает нанокластеры олова, нижележащая основа образца состоит из нелегированного диоксида кремния. Фотолюминесценция полученного кварцевого стекла возбуждалась ультрафиолетовым излучением с энергией фотонов в интервале 3,7÷12 эВ через монохроматор. Фотолюминесцентные спектры регистрировались с помощью фотоумножителя R6358P Hamamatsu.

Фотолюминесцентный спектр излучения образца № 1 полученного кварцевого стекла приведен на фиг.2. Спектры излучения образцов № 2 и № 3 по форме соответствуют спектру образца № 1, отличаясь амплитудами излучения, указанными в таблице.

Ниже описаны примеры изготовления образцов предложенного кварцевого стекла. Номера примеров соответствуют номерам образцов в таблице.

Пример 1. Имплантацию ионов олова в кварцевое стекло ведут с помощью ионного источника, работающего в импульсном режиме с длительностью импульсов 0,35 мс, частотой повторения импульсов 17 Гц, импульсной плотностью ионного тока 0,85 мА/см2, дозой облучения 4,7×1016 ион/см2 и энергией ионов олова 33 кэВ, при температуре диоксида кремния 200°С. Последующий отжиг имплантированного ионами олова кварцевого стекла осуществляют при температуре 870°С в течение 60 мин в воздушной атмосфере. Интенсивность излучения полученного образца № 1 составила 7850 отн.ед. в максимуме на длине волны 751 нм, находящейся в ближней, области инфракрасного диапазона.

Пример 2. Имплантацию ионов олова в кварцевое стекло ведут с помощью ионного источника, работающего в импульсном режиме с длительностью импульсов 0,3 мс, частотой повторения импульсов 12,5 Гц, импульсной плотностью ионного тока 0,8 мА/см2 , дозой облучения 4,5×1016 ион/см2 и энергией ионов олова 30 кэВ, при температуре диоксида кремния 60°С. Последующий отжиг имплантированного ионами олова кварцевого стекла осуществляют при температуре 850°С в течение 50 мин в воздушной атмосфере. Интенсивность излучения полученного образца № 1 составила 6510 отн.ед. в максимуме на длине волны 751 нм.

Пример 3. Имплантацию ионов олова в кварцевое стекло ведут с помощью ионного источника, работающего в импульсном режиме с длительностью импульсов 0,4 мс, частотой повторения импульсов 20 Гц, импульсной плотностью ионного тока 0,9 мА/см 2, дозой облучения 5×1016 ион/см2 и энергией ионов олова 35 кэВ, при температуре диоксида кремния 350°С. Последующий отжиг имплантированного ионами олова кварцевого стекла осуществляют при температуре 900°С в течение 70 мин в воздушной атмосфере. Интенсивность излучения полученного образца № 1 составила 6730 отн.ед. в максимуме на длине волны 751 нм.

Класс C23C14/48 ионное внедрение

способ ионной имплантации поверхностей деталей из конструкционной стали -  патент 2529337 (27.09.2014)
способ импульсно-периодической ионной очистки поверхности изделий из диэлектрического материала или проводящего материала с диэлектрическими включениями -  патент 2526654 (27.08.2014)
конвертер вакуумного ультрафиолетового излучения в излучение видимого диапазона в виде аморфной пленки оксида кремния siox на кремниевой подложке -  патент 2526344 (20.08.2014)
устройство для химико-термической обработки деталей в несамостоятельном тлеющем разряде -  патент 2518047 (10.06.2014)
способ изготовления газодинамического подшипника поплавкового гироскопа -  патент 2517650 (27.05.2014)
способ имплантации ионами газов металлов и сплавов -  патент 2509174 (10.03.2014)
способ получения люминофора в виде аморфной пленки диоксида кремния с ионами селена на кремниевой подложке -  патент 2504600 (20.01.2014)
катод установки для ионной имплантации -  патент 2501886 (20.12.2013)
способ нанесения на металлическую деталь комплексного покрытия для защиты детали от водородной коррозии, состоящего из множества микрослоев -  патент 2495154 (10.10.2013)
способ многослойного нанесения покрытий на подложку -  патент 2492276 (10.09.2013)
Наверх