способ поверхностной модификации конструкционных материалов и изделий

Классы МПК:C23C14/32 с использованием взрыва; испарением и последовательной ионизацией паров
C23C14/48 ионное внедрение
Автор(ы):
Патентообладатель(и):Федеральное государственное унитарное предприятие "Научно-исследовательский институт электрофизической аппаратуры им. Д.В. Ефремова" (ФГУП "НИИЭФА им. Д.В. Ефремова") (RU)
Приоритеты:
подача заявки:
2011-12-30
публикация патента:

Способ относится к области пучково-плазменных технологий улучшения эксплуатационных свойств конструкционных материалов и изделий, в частности к способу электровзрывного легирования. Способ включает импульсное облучение обрабатываемой поверхности ионным компонентом плазменной струи, в качестве источника ионного компонента используют продукты электрического взрыва проводников. При облучении используют коаксиально-торцевую систему электродов, интенсивность облучения поверхности выбирают, исходя из соотношения: способ поверхностной модификации конструкционных материалов и   изделий, патент № 2486281 , где способ поверхностной модификации конструкционных материалов и   изделий, патент № 2486281 , с, способ поверхностной модификации конструкционных материалов и   изделий, патент № 2486281 - коэффициент теплопроводности, удельная теплоемкость и плотность модифицируемого материала соответственно; Ph - плотность мощности поверхностного нагрева, ГВт/м2 ; Tm - температура плавления материала, K; способ поверхностной модификации конструкционных материалов и   изделий, патент № 2486281 T/способ поверхностной модификации конструкционных материалов и   изделий, патент № 2486281 t - скорость охлаждения расплавленного поверхностного слоя, К/с. Длительность импульса облучения t* оценивают из соотношения: способ поверхностной модификации конструкционных материалов и   изделий, патент № 2486281 величина интеграла разрядного тока при электрическом взрыве проводника удовлетворяет условию: способ поверхностной модификации конструкционных материалов и   изделий, патент № 2486281 где J - интеграл разрядного тока, А2·с·м -4; jy - плотность тока через взрываемый проводник, A/m2; t - время обработки, с; Jvb - табличная величина интеграла тока для перехода проводника в парообразное состояние при температуре кипения, А2·с·м -4. Процесс электрического взрыва проводника в торцевой части коаксиальных электродов завершают до достижения максимального значения разрядного тока. Технический результат заключается в возможности достижения максимальной эффективности (псевдо)аморфизации поверхностного слоя, повышении качества поверхности вследствие отсутствия или контролируемого присутствия макрочастиц в плазменном потоке, а также в возможности контроля параметров обработки выбором момента взрыва проводника, т.е. изменением соотношения энерговкладов электрического взрыва и ускорительного механизма в системе коаксиальных электродов. 1 пр.

Формула изобретения

Способ поверхностной модификации конструкционных материалов и изделий, включающий импульсное облучение обрабатываемой поверхности ионным компонентом плазменной струи, в качестве источника ионного компонента используют продукты электрического взрыва проводников, отличающийся тем, что при облучении используют коаксиально-торцевую систему электродов, интенсивность облучения поверхности выбирают, исходя из соотношения:

способ поверхностной модификации конструкционных материалов и   изделий, патент № 2486281 ,

где способ поверхностной модификации конструкционных материалов и   изделий, патент № 2486281 , с, способ поверхностной модификации конструкционных материалов и   изделий, патент № 2486281 - коэффициент теплопроводности, удельная теплоемкость и плотность модифицируемого материала соответственно;

Ph - плотность мощности поверхностного нагрева, ГВт/м 2;

Tm - температура плавления материала, K;

способ поверхностной модификации конструкционных материалов и   изделий, патент № 2486281 T/способ поверхностной модификации конструкционных материалов и   изделий, патент № 2486281 t - скорость охлаждения расплавленного поверхностного слоя, К/с,

при этом длительность импульса облучения t* оценивают из соотношения:

способ поверхностной модификации конструкционных материалов и   изделий, патент № 2486281

величина интеграла разрядного тока при электрическом взрыве проводника удовлетворяет условию:

способ поверхностной модификации конструкционных материалов и   изделий, патент № 2486281

где J - интеграл разрядного тока, А2 ·с·м-4;

jy - плотность тока через взрываемый проводник, А/м2;

t - время обработки, с;

Jvb - табличная величина интеграла тока для перехода проводника в парообразное состояние при температуре кипения, А2·с·м-4 ,

а процесс электрического взрыва проводника в торцевой части коаксиальных электродов завершают до достижения максимального значения разрядного тока.

Описание изобретения к патенту

Область техники

Изобретение относится к области пучково-плазменных технологий улучшения эксплуатационных свойств конструкционных материалов и изделий.

Уровень техники

Во многих случаях изменение физико-химических характеристик поверхностного слоя конструкционных материалов и изделий является достаточным и экономически выгодным способом улучшения их эксплуатационных свойств. В настоящее время исторически традиционные подобные технологии (гальваническое нанесение покрытий, термическая закалка, цементирование, полировка и пр.) в основном замещены экологически чистыми плазменно-пучковыми технологиями. Хотя по объему продукции нанесение функциональных покрытий (в том числе наноструктурированных) с помощью таких технологий занимает наибольший сегмент рынка, значительный интерес представляют технологии модифицирования поверхностного слоя с помощью обработки концентрированными потоками энергии (лазерное излучение, электронные пучки, плазменные потоки).

Результатами обработки конструкционных материалов и изделий концентрированными потоками энергии являются удаление поверхностных загрязнений (включений), полировка поверхности, однако наиболее важным является возможность при определенных условиях изменять микроструктуру и фазовый состав поверхностного слоя материалов и изделий и, тем самым, улучшать их функциональные эксплуатационные характеристики. В первом случае происходит разукрупнение зерен (вплоть до аморфизации), во втором - появление метастабильных фаз и соединений, которые при обычных методах термообработки образоваться не могут.

Условием эффективной (псевдо)аморфизации микроструктуры является высокая (способ поверхностной модификации конструкционных материалов и   изделий, патент № 2486281 107 К/с) скорость охлаждения расплавленного слоя (Люборский Ф.Е., Дэвис Х.А., Либерман Х.Х. Аморфные металлические сплавы, М., Металлургия, 1987, 582 с). Использование импульсных источников концентрированных потоков энергии позволяет при определенных условиях использовать для быстрого охлаждения поверхностного слоя естественный теплопроводностный отток тепла вглубь материала. Формально требования к скорости нагрева до температуры плавления могут быть оценены, исходя из необходимости использования адиабатического режима, при котором энергия, поглощаемая в поверхностном слое, остается в его пределах в течение длительности импульса, т.е. не выносится в глубину материала.

Операции лазерной поверхностной обработки материалов (закалка, аморфизация, полировка, ударное упрочнение и др.) используют импульсный (импульсно-периодический) режим излучения с малым диаметром пучка, так что обработка площади с сантиметровыми размерами и более требует использования сканирования пучка. Высокая стоимость оборудования делает возможным коммерциализацию таких технологий только для очень специфических операций, например изготовления микрооптических элементов из стеклокерамики (Veiko I.P., Kieu Q.K. Laser amorphisation of glass ceramics: Basic properties and new possibilities for manufacturing microoptical elements // Quantum Electronics, 2007, v.37, No.1, pp.92-98).

Использование электронных пучков для подобных операций предпочтительно для достижения относительно больших (до ~100 мкм) значений толщины модифицированных слоев, однако сложность, сравнительно высокие массогабаритные характеристики и стоимость такого оборудования существенно ограничивают области использования этой технологии (Bakai A.S., Borisenko A.A.,. Russel K.С.Amorphisation kinetics under electron irradiation // Вопросы атомной науки и техники. Сер. Физика радиационных повреждений и радиационное материаловедение, 2005, № 4, с.108-113).

Одним из сравнительно экономичных способов модификации поверхности с помощью мощных плазменных потоков является использование электрического взрыва проводников (проволочек, фольг, углеграфитовых волокон) в качестве источника концентрированных потоков энергии. Экспериментально показано, что многофазные плазменные струи продуктов электрического взрыва проводников могут служить эффективным инструментом поверхностного упрочнения [Багаутдинов A.Я., Будовских Е.А., Иванов Ю.Ф., Громов В.Е. Физические основы электровзрывного легирования металлов и сплавов. - Новокузнецк: СибГИУ, 2007. - 301]. Совмещая локальное тепловое воздействие на поверхность и ее насыщение легирующими добавками, которые задаются выбором из широкого круга материалов взрываемых проводников и порошковых навесок различных соединений, вносимых в область взрыва, такие технологии могут обладать экономической эффективностью и использоваться в ряде практических применений.

Наиболее близким к заявляемому техническим решением является способ поверхностного упрочнения вольфрамокобальтового твердосплавного инструмента (Осколкова Т.А., Будовских Е.А. Способ поверхностного упрочнения вольфрамокобальтового твердосплавного инструмента. Патент РФ 2398046, опубл. 27.08.2010, бюл. № 24). Способ включает нагрев поверхности и насыщение ее продуктами взрыва с последующей самозакалкой путем отвода тепла вглубь материала и окружающую среду. В качестве источника легирующих элементов используют продукты электрического взрыва алюминиевой фольги. Облучение проводят в импульсном режиме, обеспечивающем интенсивность воздействия на поверхность в интервале 5,0÷7,6 ГВт/м2.

Работа плазменного ускорителя для ЭВЛ основана на накоплении энергии батареей импульсных конденсаторов до величин порядка 1-10 кДж и ее последующем разряде в течение 100 мкс через проводник, испытывающий при этом взрывное разрушение.

В примере реализации способа описана последовательность операций и указывается, что оптимальные результаты по глубине упрочненных слоев и их износостойкости достигаются при интенсивности воздействия 6,0 ГВт/м2.

Однако этот способ электровзрывной обработки изделий недостаточно эффективен, т.к. не способен обеспечить:

1) оптимальные условия охлаждения модифицируемого поверхностного слоя различных материалов, необходимые для его самозакалки, вплоть до аморфизации;

2) контроль соотношения нейтрального (макрочастицы) и плазменного компонентов в продуктах электрического взрыва проводника (алюминий и др.);

3) условия эффективного использования энергии конденсаторной батареи для повышения энергосодержания плазменного потока.

Эти обстоятельства существенно снижают эффективность поверхностной модификации. Первое приводит к низкой эффективности закалочного механизма повышения служебных характеристик модификации (в первую очередь твердости). Второе - к формированию на обрабатываемой поверхности высокодефектного покрытия (Багаутдинов А.Я. и др. Физические основы электровзрывного легирования металлов и сплавов - Новокузнецк: Изд-во СибГУ, 2007, 301 с.). Устранение такого покрытия требует дополнительных операций (сошлифовывание, обработка электронным пучком), т.е. ухудшает экономические показатели технологии. Третье - к низкой эффективности повышения энергосодержания плазменного потока за счет его ускорения в межэлектродном зазоре.

Целью предложенного изобретения является устранение указанных недостатков и повышение эффективности и качества процесса модификации поверхностных свойств различных материалов и изделий.

Указанная цель достигается тем, что величина скорости охлаждения, достаточная для эффективной самозакалки и аморфизации поверхностного слоя, достигается физически обоснованным выбором величины плотности мощности воздействия потока продуктов электрического взрыва проводника на поверхность мишени, требуемое соотношение компонентов в продуктах электрического взрыва проводника достигается физически обоснованным выбором величины интеграла разрядного тока через взрывающийся проводник (интеграла действия) способ поверхностной модификации конструкционных материалов и   изделий, патент № 2486281 , а высокая эффективность ускорительного механизма повышения энергосодержания в плазменном потоке - выбором момента времени электрического взрыва проводника.

Раскрытие изобретения

Основываясь на представлении о диффузионном характере проникновения тепла в среду, показано, что мощность теплопереноса в глубину материала при поверхностном нагреве можно оценить как способ поверхностной модификации конструкционных материалов и   изделий, патент № 2486281 , где способ поверхностной модификации конструкционных материалов и   изделий, патент № 2486281 , с, способ поверхностной модификации конструкционных материалов и   изделий, патент № 2486281 - коэффициент теплопроводности, удельная теплоемкость и плотность материала соответственно, Т - температура поверхности (принимаемая, например, равной температуре плавления или испарения) (Алексеев В.А., Конкашбаев И.К., Киселев Е.А. и др. // Письма в ЖТФ, 1983, 9, вып.1, с.42-45). Соответствующий этому уровень скорости охлаждения поверхностного слоя (в момент сравнивания мощностей теплоотвода и поверхностного нагрева) можно представить как способ поверхностной модификации конструкционных материалов и   изделий, патент № 2486281 , где Ph - плотность мощности поверхностного нагрева, Tm - температура плавления материала.

Принимая в соответствии с вышеупомянутым условием эффективной (псевдо)аморфизации микроструктуры металлических материалов диапазон значений скорости охлаждения как 106 -107 К/с, можно оценить уровень мощности нагрева P h. Длительность импульса облучения можно оценить как время нагрева поверхностного слоя до температуры плавления способ поверхностной модификации конструкционных материалов и   изделий, патент № 2486281 .

Т.о. получены оптимальные с точки зрения эффективности модификации микроструктуры поверхностного слоя параметры процесса нагрева поверхности модифицируемого материала, определяемые физическими свойствами последнего.

Обработка ЭВЛ производится с помощью плазменной струи, формируемой из продуктов электрического взрыва торцевой проводящей перемычки с помощью коаксиально-торцевой системы электродов. По сути такое устройство является хорошо известным электроэрозионным плазменным ускорителем с плазмообразующим материалом - электропроводящей перемычкой (фольгой, проволочкой, углеродной нитью и т.п.).

В этом случае из продуктов взрыва формируется многофазный (плазменная фаза и нейтральные компоненты в виде пара и макрочастиц) поток, ускоряемый электродинамическими силами в межэлектродном промежутке. Соотношение содержания этих фаз можно варьировать величиной интеграла тока через проводник (интеграла действия) способ поверхностной модификации конструкционных материалов и   изделий, патент № 2486281 , значения которого для каждого фазового состояния некоторых конструкционных металлов известны (например, Кнопфель Г. Сверхсильные импульсные магнитные поля, М., "Мир", 1972). Так, для достижения полного испарения алюминиевого проводника и, следовательно, минимизации капельной фазы интеграл разрядного тока должен превышать величину интеграла тока для достижения паровой фазы при температуре кипения Jvbспособ поверхностной модификации конструкционных материалов и   изделий, патент № 2486281 1,09·1017 А2·с·м -4. Это, естественно, накладывает ограничения на параметры токового импульса и, следовательно, параметры разрядного контура.

Использование коаксиальной системы электродов позволяет при соответствующих условиях использовать механизм электродинамического ускорения плазмы продуктов взрыва для повышения энергосодержания плазменного потока и, следовательно, повышения эффективности обоих компонентов ЭВЛ - термического воздействия и легирования поверхностного слоя. С этой целью процесс электрического взрыва проводника в торцевой части коаксиальных электродов должен завершиться до максимума разрядного тока с тем, чтобы оставшаяся часть энергии была затрачена на процесс ускорения плазменного сгустка.

Изобретение позволяет повысить эффективность и качество модификации поверхности материалов и изделий с помощью электровзрывной обработки на основе использования физически обоснованного выбора параметров электровзрывной обработки.

Осуществление изобретения

Заявляемый способ осуществляют следующим образом:

1) используя значения физических параметров свойств обрабатываемого материала, оценивается необходимый уровень мощности нагрева поверхности из выражения способ поверхностной модификации конструкционных материалов и   изделий, патент № 2486281

2) используя выражение способ поверхностной модификации конструкционных материалов и   изделий, патент № 2486281 оценивается величина длительности импульса облучения;

3) исходя из примерного значения площади пятна обработки Sобр за один импульс оценивается диаметр наружного электрода ускорителя (D ~ Dобр), выбирается соотношение диаметров внутреннего и наружного электродов (например, 1:3);

4) с помощью вычисления интеграла тока для конкретных временной зависимости (например, синусоидальной) и момента полного испарения (взрыва) проводника и приравнивании его значения табличному оценивается величина максимальной плотности тока во взрываемом проводнике. Выбором сечения взрывающегося проводника (при заданном целью модификации его материале) определяется величина разрядного тока в момент взрыва проводника, т.е. равенства интеграла разрядного тока табличному значению при полном его испарении;

5) используя полученные данные для разрядного тока, оцениваются параметры разрядного контура (емкость и напряжение конденсаторного накопителя, индуктивность контура);

Пример. Обработка вольфрамкобальтового сплава

1) Уровень мощности нагрева поверхности способ поверхностной модификации конструкционных материалов и   изделий, патент № 2486281 ГВт/м2 для уровня скорости охлаждения расплавленного слоя 106-107 К/с.

2) Длительность импульса облучения (время нагрева поверхностного слоя до температуры плавления) способ поверхностной модификации конструкционных материалов и   изделий, патент № 2486281 (что соответствует величине плотности поглощенной энергии ~105 Дж/м2, достаточной для расплавления поверхностного слоя большинства конструкционных материалов).

3) Принимая, что площадь обработки единичным импульсом составляет ~20 см2, диаметр наружного цилиндрического электрода принимается равным D=6 см, внутреннего - 2 см, толщина кольцевой фольги - 10-4 м.

4) Принимая, что момент взрыва проводника tв~T0/4 соответствует максимуму разрядного тока, а время обработки способ поверхностной модификации конструкционных материалов и   изделий, патент № 2486281 и используя табличное значение интеграла тока для А1 проводника при температуре испарения Jvb=1,09·1017 А2·c·м-4, оцениваются необходимая величина максимальной плотности тока в фольге (толщиной 100 мкм) jm=5·108 А/м2 и период разрядного тока: Т0способ поверхностной модификации конструкционных материалов и   изделий, патент № 2486281 4·10-5 с.

5) Исходя из полученных данных разрядного тока оцениваются параметры емкостного накопителя с энергозапасом W0~10 кДж.

Использование таких параметров позволяет получать предсказуемые результаты ЭВЛ различных материалов при использовании различных материалов взрываемых проводников. Положительными эффектами использования способа являются возможности достижения максимальной эффективности (псевдо)аморфизации поверхностного слоя, существенное повышение качества поверхности вследствие отсутствия (или контролируемое присутствия) макрочастиц в плазменном потоке, а также возможность контроля параметров обработки выбором момента взрыва проводника, т.е. изменением соотношения энерговкладов электрического взрыва и ускорительного механизма.

Класс C23C14/32 с использованием взрыва; испарением и последовательной ионизацией паров

способ изготовления слоев оксида металла заранее заданной структуры посредством испарения электрической дугой -  патент 2528602 (20.09.2014)
износостойкое защитное покрытие и способ его получения -  патент 2528298 (10.09.2014)
устройство для нанесения покрытий путем электрического взрыва фольги (варианты) -  патент 2526334 (20.08.2014)
способ изготовления слоев оксида металла посредством испарения электрической дугой -  патент 2525949 (20.08.2014)
способ предварительной обработки подложек для способа нанесения покрытия осаждением паров -  патент 2519709 (20.06.2014)
способ электровзрывного напыления композиционных износостойких покрытий системы tic-mo на поверхности трения -  патент 2518037 (10.06.2014)
электродуговой испаритель металлов и сплавов -  патент 2510428 (27.03.2014)
применение мишени для искрового напыления и способ получения подходящей для этого применения мишени -  патент 2501885 (20.12.2013)
способ изготовления режущих керамических пластин из нитридной керамики -  патент 2491367 (27.08.2013)
способ электровзрывного напыления композитных покрытий системы, tib2-cu на медные контактные поверхности -  патент 2489515 (10.08.2013)

Класс C23C14/48 ионное внедрение

способ ионной имплантации поверхностей деталей из конструкционной стали -  патент 2529337 (27.09.2014)
способ импульсно-периодической ионной очистки поверхности изделий из диэлектрического материала или проводящего материала с диэлектрическими включениями -  патент 2526654 (27.08.2014)
конвертер вакуумного ультрафиолетового излучения в излучение видимого диапазона в виде аморфной пленки оксида кремния siox на кремниевой подложке -  патент 2526344 (20.08.2014)
устройство для химико-термической обработки деталей в несамостоятельном тлеющем разряде -  патент 2518047 (10.06.2014)
способ изготовления газодинамического подшипника поплавкового гироскопа -  патент 2517650 (27.05.2014)
способ имплантации ионами газов металлов и сплавов -  патент 2509174 (10.03.2014)
способ получения люминофора в виде аморфной пленки диоксида кремния с ионами селена на кремниевой подложке -  патент 2504600 (20.01.2014)
катод установки для ионной имплантации -  патент 2501886 (20.12.2013)
способ нанесения на металлическую деталь комплексного покрытия для защиты детали от водородной коррозии, состоящего из множества микрослоев -  патент 2495154 (10.10.2013)
способ многослойного нанесения покрытий на подложку -  патент 2492276 (10.09.2013)
Наверх