способ определения термоокислительной стабильности смазочных материалов

Классы МПК:G01N25/00 Исследование или анализ материалов с помощью тепловых средств
Автор(ы):, , , ,
Патентообладатель(и):Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Сибирский федеральный университет" (СФУ) (RU)
Приоритеты:
подача заявки:
2011-11-03
публикация патента:

Изобретение относится к технологии испытания смазочных материалов и может быть использовано для определения их ресурса. Заявлен способ определения термоокислительной стабильности смазочных материалов, при котором пробу смазочного материала постоянного объема нагревают с перемешиванием в присутствии воздуха, фотометрируют и определяют коэффициент поглощения светового потока. При этом сначала каждую из проб смазочного материала предварительно нагревают в течение постоянного времени при атмосферном давлении и фиксированной температуре, которую при каждом последующем испытании новой пробы повышают, а после каждого нагревания отбирают пробу смазочного материала постоянной массы, которую затем нагревают с перемешиванием в присутствии воздуха в течение установленного времени в зависимости от базовой основы при постоянной температуре и постоянной скорости перемешивания, которую после окисления фотометрируют, определяют коэффициент поглощения светового потока. Затем строят графическую зависимость коэффициента поглощения светового потока от температуры нагревания. Термоокислительную стабильность смазочного материала определяют по температуре нагревания с наименьшим значением коэффициента поглощения светового потока. Технический результат: повышение точности определения термоокислительной стабильности смазочных материалов. 1 ил.

способ определения термоокислительной стабильности смазочных   материалов, патент № 2485486

Формула изобретения

Способ определения термоокислительной стабильности смазочных материалов, при котором пробу смазочного материала постоянного объема нагревают с перемешиванием в присутствии воздуха, фотометрируют и определяют коэффициент поглощения светового потока, отличающийся тем, что сначала каждую из проб смазочного материала предварительно нагревают в течение постоянного времени при атмосферном давлении и фиксированной температуре, которую при каждом последующем испытании повой пробы повышают, а после каждого нагревания отбирают пробу смазочного материала постоянной массы, которую затем нагревают с перемешиванием в присутствии воздуха в течение установленного времени в зависимости от базовой основы при постоянной температуре и постоянной скорости перемешивания, которую после окисления фотометрируют, определяют коэффициент поглощения светового потока, строят графическую зависимость коэффициента поглощения светового потока от температуры нагревания, а термоокислительную стабильность смазочного материала определяют по температуре нагревания с наименьшим значением коэффициента поглощения светового потока.

Описание изобретения к патенту

Изобретение относится к технологии испытания смазочных материалов и может быть использовано для определения их ресурса.

Известен способ определения термоокислительной стабильности смазочных материалов (Патент РФ, № 2057326, G01N 25/02, опубл. 27.03.1996), который включает нагревание смазочного материала в присутствии воздуха, перемешивание, определение параметров оценки процесса окисления. Испытанию подвергают порознь две пробы смазочного материала, нагревание каждой из которых осуществляют одновременно с перемешиванием, которое осуществляют с помощью механического устройства. В качестве параметров оценки процесса окисления берут оптическую плотность испытываемого смазочного материала, которую определяют перед и в процессе нагревания фотометрированием, строят графическую зависимость оптической плотности от температуры окисления, по точке перегиба которой определяют температуру начала окисления.

Наиболее близким по технической сущности и достигаемому результату является способ определения термоокислительной стабильности смазочных материалов (Патент РФ, № 2219530, G01N 25/00, опубл. 20.12.2003), включающий нагревание смазочного материала в присутствии воздуха, перемешивание, фотометрирование и определение параметров оценки процесса окисления. Испытывают пробу смазочного материала постоянного объема при оптимальной температуре, выбранной в зависимости от базовой основы смазочного материала и группы эксплуатационных свойств в течение времени, характеризующего одинаковую степень окисления, причем через равные промежутки времени отбирают пробу окисленного смазочного материала, определяют фотометрированием коэффициент поглощения светового потока окисленным смазочным материалом, строят графическую зависимость изменения коэффициента поглощения светового потока от времени испытания, продлевают линию зависимости после точки перегиба до пересечения с осью абсцисс и по абсциссе этой точки определяют время начала образования нерастворимых примесей, по точке перегиба зависимости определяют время начала коагуляции нерастворимых примесей, а по предельному значению коэффициента поглощения светового потока определяют ресурс работоспособности смазочного материала.

Недостатком известных технических решений является то, что они не учитывают влияние предварительного нагревания смазочного материала на его термоокислительную стабильность.

Техническим результатом изобретения является повышение термоокислительной стабильности смазочных материалов за счет их предварительного нагревания.

Поставленная задача решается тем, что в способе определения термоокислительной стабильности смазочных материалов, при котором пробу смазочного материала постоянного объема нагревают с перемешиванием в присутствии воздуха, фотометрируют и определяют коэффициент поглощения светового потока, согласно изобретению, сначала каждую из проб смазочного материала предварительно нагревают в течение постоянного времени при атмосферном давлении и фиксированной температуре, которую при каждом последующем испытании новой пробы повышают, а после каждого нагревания отбирают пробу смазочного материала постоянной массы, которую затем нагревают с перемешиванием в присутствии воздуха в течение установленного времени в зависимости от базовой основы при постоянной температуре и постоянной скорости перемешивания, которую после окисления фотометрируют, определяют коэффициент поглощения светового потока, строят графическую зависимость коэффициента поглощения светового потока от температуры нагревания, а термоокислительную стабильность смазочного материала определяют по температуре нагревания с наименьшим значением коэффициента поглощения светового потока.

На чертеже представлены зависимости коэффициента поглощения светового потока от температуры нагревания: а - минеральное моторное масло Лукойл Стандарт 10W-40 SF/CC; б - синтетическое моторное масло Mobil Super 3000 5W-40 SL/CF; в - частично синтетическое Mobil-Super 2000 10W-40 SJ/SL/CF.

Пример конкретного выполнения способа. Испытанию подвергались товарные смазочные масла минеральное Лукойл Стандарт 10W-40 SF/CC, частично синтетическое Mobil Super 2000 10W-40 SJ/SL/CF, синтетическое Mobil Super 3000 5W-40 SL/CF. Пробу испытуемого товарного масла постоянной массы, например 120 г, наливают в термостойкий стеклянный стакан нагревателя и с помощью программы терморегулятора ТРМ-101 устанавливают первоначальную температуру, например 140°C, включают нагрев и при наборе заданной температуры регистрируют время начала испытания (термостатирования) при атмосферном давлении без перемешивания. После нагревания смазочного материала в течение постоянного времени, например 8 часов, нагреватель отключают, из каждой испытанной пробы отбирают пробу постоянной массы, например 100 г, помещают в прибор для окисления при температуре 180°C с перемешиванием стеклянной мешалкой с частотой вращения 300 об/мин и нагревают в течение постоянного времени, выбранного в зависимости от базовой основы, например 56 часов. Время испытания определяется из учета не превышения предельного экспериментально обоснованного значения коэффициента поглощения светового потока 0,8. Эксплуатация смазочных материалов с коэффициентом поглощения больше 0,8 приводит к загрязнению масляных систем, фильтрующих элементов и снижению их противоизносных свойств. После нагревания с перемешиванием отбирают пробу для фотометрирования и определения коэффициента поглощения светового потока.

Новые пробы испытуемого смазочного материала термостатируют тем же способом при повышении температуры, например, на 20°C выше предыдущей в диапазоне от 140 до 280°C, затем пробы постоянной массы (100 г) при каждой температуре окисляют путем нагревания с перемешиванием при 180°C. После проведения цикла испытаний полученные результаты заносят в таблицу. Строят графическую зависимость коэффициента поглощения светового потока окисленных масел от температуры нагревания (см. чертеж), по которой определяют температуру, при которой коэффициент поглощения светового потока наименьший, т.е. при этой температуре смазочный материал оказывает наибольшее сопротивление окислению за счет инициирования антиокислительных присадок. Так, минеральное масло Лукойл Стандарт 10W-40 SF/CC показало наивысшую термоокислительную стабильность при температурах 220 и 240°C (чертеж а); синтетическое моторное масло Mobil Super 3000 5W-40 SL/CF - 220°C (чертеж б); частично синтетическое Mobil Super 2000 10W-40 SJ/SL/CF - 180°C (чертеж в).

Применение предлагаемого способа позволяет повысить термоокислительную стабильность производимых промышленностью смазочных материалов от 20 до 60%.

Таблица
Температура испытания, °C Коэффициент поглощения светового потока (Кп) при испытании моторных масел, ед.
Минеральное Лукойл Стандарт 10W-40 SF/CC Синтетическое Mobil Super 3000 5W-40 SL/CF Частично синтетическое Mobil Super 2000 10W-40 SJ/SL/CF
140 0,80,3 0,69
160 0,8 0,30,59
180 0,640,29 0,56
200 0,61 0,250,83
220 0,50,23 -
240 0,5 0,64-
260 0,79- -
280 - --

Класс G01N25/00 Исследование или анализ материалов с помощью тепловых средств

калориметр переменной температуры (варианты) -  патент 2529664 (27.09.2014)
способ выявления массовой скорости выгорания древесины в перекрытии здания -  патент 2529651 (27.09.2014)
способ определения коэффициента теплового объемного расширения жидкости -  патент 2529455 (27.09.2014)
способ определения теплозащитных свойств материалов и пакетов одежды -  патент 2527314 (27.08.2014)
способ измерения теплопроводности и теплового сопротивления строительной конструкции -  патент 2527128 (27.08.2014)
способ определения степени повреждения силосного корпуса элеватора из сборного железобетона -  патент 2525313 (10.08.2014)
способ определения теплоты адсорбции и теплоты смачивания поверхности и измерительная ячейка калориметра -  патент 2524414 (27.07.2014)
способ измерения тепловых эффектов дифференциальным модуляционным сканирующим калориметром и калориметр для его осуществления -  патент 2523760 (20.07.2014)
способ определения удельной теплоемкости материалов -  патент 2523090 (20.07.2014)
способ определения влагоемкости твердых гигроскопичных объектов -  патент 2522754 (20.07.2014)
Наверх