способ получения магнитоактивных покрытий на титане и его сплавах

Классы МПК:C25D11/26 тугоплавких металлов или их сплавов
Автор(ы):, , , , ,
Патентообладатель(и):Федеральное государственное бюджетное учреждение науки Институт химии Дальневосточного отделения Российской академии наук (ИХ ДВО РАН) (RU)
Приоритеты:
подача заявки:
2012-03-11
публикация патента:

Изобретение относится к области получения тонких пленок магнитных материалов, в частности магнитоактивных оксидных покрытий на титане и его сплавах, и может найти применение при изготовлении электромагнитных экранов и поглотителей электромагнитного и высокочастотного излучения для различной аппаратуры, экранированных помещений, защищенных от утечки информации, а также для космической и авиационной техники. Способ включает плазменно-электролитическое оксидирование титановой подложки в водном электролите, содержащем, г/л: фосфат натрия 10-15, наночастицы кобальта 1,0-1,5 и додецилсульфат натрия 0,1-0,2, в гальваностатическом режиме при плотности тока 0,05-0,2 А/см2 в течение 10-20 мин с последующей обработкой центрифугированием в водной суспензии, содержащей 55-60 мас.% ультрадисперсного политетрафторэтилена (ПТФЭ) и 8,0-8,5% от массы сухого ПТФЭ продукта обработки смеси моно- и диалкилфенолов окисью этилена, и отжиг при 360-370°С в течение 10-15 мин. Технический результат - повышение коррозионной стойкости и срока службы магнитоактивных покрытий, а также обеспечение их стабильного качества за счет увеличения стабильности и рабочего ресурса электролита. 2 пр., 4 ил.

способ получения магнитоактивных покрытий на титане и его сплавах, патент № 2478738 способ получения магнитоактивных покрытий на титане и его сплавах, патент № 2478738 способ получения магнитоактивных покрытий на титане и его сплавах, патент № 2478738 способ получения магнитоактивных покрытий на титане и его сплавах, патент № 2478738

Формула изобретения

Способ получения магнитоактивных покрытий на титане и его сплавах, включающий плазменно-электролитическое оксидирование (ПЭО) титановой подложки в гальваностатическом режиме в водном электролите, содержащем фосфат натрия и частицы магнитного металла, отличающийся тем, что ПЭО осуществляют при плотности тока 0,05-0,2 А/см2 в течение 10-20 мин в электролите, который в качестве частиц магнитного металла содержит наночастицы кобальта и дополнительно включает додецилсульфат натрия при следующем содержании компонентов, г/л:

фосфат натрия10-15
наночастицы кобальта 1,0-1,5
додецилсульфат натрия 0,1-0,2,


затем подложку со сформированным ПЭО покрытием обрабатывают путем центрифугирования в водной суспензии, содержащей 55-60 мас.% ультрадисперсного политетрафторэтилена (ПТФЭ) и 8,0-8,5% от массы сухого ПТФЭ продукта обработки смеси моно- и диалкилфенолов окисью этилена, и подвергают отжигу при 360-370°С в течение 10-15 мин.

Описание изобретения к патенту

Изобретение относится к области получения тонких пленок магнитных материалов, а именно магнитоактивных оксидных покрытий на титане и его сплавах, и может найти применение при изготовлении электромагнитных экранов и поглотителей электромагнитного и высокочастотного излучения, применяемых для отдельных элементов, функциональных узлов и аппаратуры в целом, которые могут быть источниками либо рецепторами помех, в составе интегрированных панелей для облицовки внутренней поверхности специальных помещений, в частности, камер для настройки и испытаний электро- и радиоприборов на электромагнитную совместимость, экранированных помещений, защищенных от утечки информации, а также в космической и авиационной технике.

Для практического применения большое значение имеет возможность получения на металлической подложке материала заданного состава и структуры, от которых зависит его способность поглощать электромагнитное и высокочастотное излучение, при этом каждому конкретному составу соответствует максимальная поглощающая способность при определенных частотах. Электрохимическая обработка металлической подложки путем подбора соответствующего электролита и условий обработки обеспечивает такую возможность.

Известен способ получения наноструктурированных магнитных металл-оксидных слоев с заданными магнитными характеристиками толщиной 10-20 мкм на поверхности алюминия [Магнитные металлоксидные наноструктуры на поверхности алюминия. Болтушкин А.В. и др. Сборник докладов международной научной конференции «Актуальные проблемы физики твердого тела» ФТТ-2005, г.Минск 26-28 октября, с.244-247] путем электрохимической обработки алюминиевой подложки, включающий формирование пористой оксидной пленки анодированием в водном сернокислом электролите в течение 20-40 мин и последующее электролитическое осаждение Co-Cu и Fe-Cu в поры полученной анодной оксидной пленки переменным либо импульсным реверсивным токами из сернокислых электролитов. Однако полученные известным способом металл-оксидные слои обладают недостаточной коррозионной стойкостью, в ходе эксплуатации на их магнитных свойствах может отражаться воздействие высокой влажности, коррозионно-активных ионов и других неблагоприятных факторов окружающей среды.

Известен способ получения магнитоактивных оксидных покрытий на вентильных металлах и их сплавах (пат. РФ № 2420614, опубл. 2011.06.10), включающий электрохимическую обработку, осуществляемую плазменно-электролитическим оксидированием в гальваностатическом режиме при эффективной плотности тока 0,05-0,20 А/см2 и конечном напряжении формирования 60-380 В в течение не менее 5 мин в водном электролите, содержащем, г/л: фосфат натрия 20-30, борат натрия 10-15, вольфрамат натрия 1-3, оксалат железа 13-26 и/или ацетат никеля 10-20. Однако оксидные покрытия, полученные известным способом, не обнаруживают достаточно высокой устойчивости по отношению к неблагоприятным воздействиям окружающей среды, к которым, в первую очередь, следует отнести высокую влажность, особенно при повышенной температуре, присутствие агрессивных ионов.

Наиболее близким к заявляемому является описанный в работе Fanya J., Honghui Т., Jiong L., Liru S., Paul K.C. Structure and microwave-absorbing properties of Fe-particle containing alumina prepared by micro-arc discharge oxidation. (Surface and Coatings Technology. 201 (2006), p.292-295) способ получения магнитоактивных покрытий, содержащих около 16 мас.% железа, включающий плазменно-электролитическое оксидирование подложки из сплава алюминия в водном электролите, содержащем вольфрамат натрия NaWO3, фосфат натрия Na3 PO4·12H2O и частицы железа, в гальваностатическом режиме при напряжении 300-450 В и средней плотности тока 8 А/дм 2. Значения магнитной и диэлектрической проницаемости в области частот 6,5-18 GHz и толщина (около 50 мкм) полученных известным способом магнитоактивных покрытий обеспечивают их применение для экранирования микроволнового излучения.

Недостатком известного способа является недостаточная коррозионная устойчивость получаемых магнитоактивных покрытий, вследствие чего их магнитные свойства могут испытывать воздействие неблагоприятных факторов окружающей среды, а срок службы таких покрытий сокращается. Кроме того, используемый для его осуществления электролит является недостаточно стабильным: в течение короткого времени начинается оседание и выпадение в осадок диспергированных в нем частиц железа, что приводит к уменьшению рабочего ресурса электролита, плохой воспроизводимости результатов и не позволяет получить покрытия стабильного качества.

Задачей изобретения является создание способа получения на титане и его сплавах коррозионностойких магнитоактивных кобальтсодержащих покрытий стабильного качества.

Актуальность задачи обусловлена тем, что титан, который относится к парамагнитным металлам, не взаимодействующим с магнитным полем, используется в производстве специального немагнитного оборудования, техники, приборов и машин.

Технический результат изобретения заключается в повышении коррозионной устойчивости и срока службы получаемых магнитоактивных покрытий при одновременном обеспечении их стабильного качества за счет увеличения стабильности и рабочего ресурса электролита.

Указанный технический результат достигается способом получения магнитоактивных покрытий на титане и его сплавах, включающим плазменно-электролитическое оксидирование (ПЭО) титановой подложки в гальваностатическом режиме в водном электролите, содержащем фосфат натрия и частицы магнитного металла, в котором, в отличие от известного, ПЭО осуществляют при плотности тока 0,05-0,2 А/см2 в течение 10-20 мин в электролите, который в качестве частиц магнитного металла содержит наночастицы кобальта и дополнительно включает додецилсульфат натрия при следующем содержании компонентов, г/л:

фосфат натрия Na3PO4·12H2 O10-15
наночастицы кобальта 1,0-1,5
додецилсульфат натрия C12H25NaO4S 0,1-0,2,

при этом подложку со сформированным ПЭО покрытием обрабатывают путем центрифугирования (spin coating) в водной суспензии, содержащей 55-60 мас.% ультрадисперсного политетрафторэтилена (ПТФЭ) и 8,0-8,5% от массы сухого ПТФЭ продукта обработки смеси моно- и диалкилфенолов окисью этилена, и подвергают отжигу при 360-370ºС в течение 10-15 мин.

Способ осуществляют следующим образом.

Готовят электролит плазменно-электролитического оксидирования.

В необходимое количество дистиллированной воды вносят расчетное количество наночастиц кобальта и с помощью ультразвуковой обработки частотой не менее 20 кГц в течение не менее 120 секунд получают водную дисперсию наночастиц кобальта, к которой добавляют водный раствор анионного поверхностно-активного вещества - додецилсульфата натрия (синонимы: додецилсульфат натриевой соли, натрий лаурилсульфат). Полученную смесь вновь подвергают ультразвуковой обработке с получением суспензии с достаточной седиментационной и агрегативной устойчивостью.

Отдельно готовят водный раствор фосфата натрия.

Смешивают в рассчитанном соотношении подготовленную суспензию и водный раствор фосфата натрия и механически перемешивают полученную смесь в течение не менее 30 мин.

Образец (подложку) из титана либо его сплава погружают в свежеприготовленный электролит и подвергают плазменно-электролитическому оксидированию в монополярном гальваностатическом режиме при эффективной плотности тока 0,05-0,2 А/см2 в течение 10-20 мин. Титановая подложка при этом является анодом.

После оксидирования образец промывают дистиллированной водой и высушивают при 100ºС в течение 1 часа.

Толщина сформированного ПЭО покрытия (оксидного слоя) составляет не менее 10 мкм.

На подготовленное ПЭО покрытие наносят защитный слой ультрадисперсного ПТФЭ.

Для этого готовят водную суспензию, содержащую 55-60 мас.% ультрадисперсного ПТФЭ с размером частиц 0,06-0,4 мкм, в которую для стабилизации суспензии и улучшения смачивания частиц ПТФЭ вводят неионогенное поверхностно-активное вещество в количестве 8,0-8,5% от массы сухого ПТФЭ.

Используемое в предлагаемом способе неионогенное поверхностно-активное вещество (ПАВ) представляет собой продукт обработки смеси моно- и диалкилфенолов окисью этилена с условной структурной формулой

способ получения магнитоактивных покрытий на титане и его сплавах, патент № 2478738

где R - алкильный радикал, содержащий 8-12 атомов углерода; n=10-12 (вспомогательное вещество ОП-10 в соответствии с ГОСТ 8433-81).

Расчетное количество указанного неионогенного ПАВ, которое играет роль одновременно смачивателя и эмульгатора, вводят в виде водного раствора.

Водную дисперсию ПТФЭ с добавкой указанного неионогенного ПАВ перемешивают в течение 10-20 мин с помощью высокооборотной мешалки и наносят на титановую подложку со сформированным ПЭО покрытием. Нанесение осуществляют методом центрифугирования (spin coating) с последующим отжигом при 360-370ºС в течение 10-15 мин.

Полученное покрытие с нанесенным защитным слоем после отжига имеет толщину до 15 мкм. Поверхность покрытия темно-серого цвета, с порами «запечатанными» полимером.

Внешний вид поверхности покрытия показан на фиг.1 (фотография получена с помощью сканирующего электронного микроскопа Evex Mini-SEM при увеличении ×1000).

Состав магнитоактивного слоя покрытия, по данным рентгеновской фотоэлектронной спектроскопии, включает Со(ОН)2, СоО, Со2О3 , а также металлический Со, при этом содержание Со, которое приходится на его ферромагнитные соединения, составляет в среднем 1,5 ат.%.

Значение коэрцитивной силы полученного магнитоактивного слоя покрытия составляет около 500 Э при комнатной температуре и не менее 1000 Э при температуре 2 К, что характеризует его ферромагнитные свойства.

Модуль импеданса (полного сопротивления переменному току) поверхности покрытия при частоте тестового сигнала 0,02 Гц (|Z|f=0,02Гц) составляет 7,7·108 Ом·см2, что свидетельствует о высоких защитных свойствах покрытия.

Примеры конкретного осуществления способа

Магнитные измерения осуществляли с помощью SQUID магнетометра MPMS XL фирмы Quantum Design, используя две методики: охлаждение образца без внешнего магнитного поля - zero field cooling (ZFC) и охлаждение во внешнем магнитном поле - field cooling (FC).

Толщину покрытий определяли с помощью вихретокового толщиномера ВТ-201.

Пример 1

Для приготовления электролита готовят суспензию наночастиц кобальта: к 300 мл дистиллированной воды добавляют 0,45 г Со и обрабатывают с помощью ультразвукового гомогенизатора Bandelin SONOPULS HD 3200 при мощности 125 Вт в течение 120 с. В полученную суспензию добавляют 100 мл водного раствора додецилсульфата натрия (0,1 г на 100 мл дистиллированной воды); смесь подвергают обработке в ультразвуковой ванне Bandelin RK 31 в течение 30 мин. Далее в электролит вводят фосфат натрия в виде водного раствора (10 г на 600 мл воды), при этом на 400 мл подготовленной суспензии, включающей наночастицы Со и додецил сульфат натрия, используют 600 мл подготовленного фосфата натрия. Электролит перемешивают с помощью механической высокооборотной мешалки Heidolph RZR-1 (верхнеприводная с крыльчаткой лопастного типа) в течение 30 мин.

Пластину из технически чистого титана ВТ 1-0 размером 2х2 см толщиной 0,2 см подвергают плазменно-электролитической обработке в гальваностатическом режиме при плотности тока 0,05 А/см2 в течение 20 мин в подготовленном электролите, содержащем, г/л:

фосфат натрия10
наночастицы кобальта 1,5
додецилсульфат натрия 0,1.

Для нанесения защитного слоя готовят водную суспензию, содержащую на 100 мл дистиллированной воды: 55 г ультрадисперсного ПТФЭ и 4,4 г продукта обработки смеси моно- и диалкилфенолов окисью этилена, которую перемешивают с помощью механической высокооборотной мешалки Heidolph RZR-1 в течение 15 мин.

Подготовленную водную суспензию наносят на сформированное ПЭО покрытие методом центрифугирования (spin coating) с помощью SpinCoater VTC-100 в 2 этапа: сначала в течение 30 сек при 500 об/мин, затем в течение 30 сек при 2000 об/мин.

После высыхания нанесенной эмульсии на воздухе образец помешают в муфельную печь SNOL 7,2/1100 L на 10 мин при 360ºС.

На поверхности магнитоактивного ПЭО покрытия образуется равномерная тонкая полимерная пленка толщиной примерно 2 мкм с диэлектрическими свойствами, устойчивая по отношению к различным неблагоприятным факторам окружающей среды, обеспечивающая его защиту при механических воздействиях и стабильность свойств при изменении температуры, влажности и т.д.

Общая толщина магнитоактивного покрытия - 12 мкм, значение коэрцитивной силы при комнатной температуре 524 Э, при 2 К - 1024 Э.

Значение модуля импеданса поверхности |Z|f=0,02Гц составляет 7,7·10 8 Ом·см2.

Кривые намагничивания и петля гистерезиса для полученного покрытия показаны на фиг.1 (а - при 300 К (комнатная температура); б - при 2 К (охлаждение без внешнего магнитного поля); в - при 2 К (охлаждение во внешнем магнитном поле).

Пример 2

Аналогично примеру 1 предварительно готовят суспензию наночастиц кобальта (на 300 мл дистиллированной воды 0,30 г Со), к которой добавляют 200 мл водного раствора додецилсульфата натрия (0,1 г на 100 мл воды). К полученной суспензии, включающей наночастицы Со и додецил сульфат натрия, добавляют фосфат натрия в виде водного раствора (15 г на 500 мл воды), при этом на 500 мл суспензии берут 500 мл раствора фосфата натрия.

Пластину размерами по примеру 1 из сплава титана ОТ4-0 (%: Ti 96,3-98,6, Al 0,4-1,4, Mn 0,5-1,3, Fe до 0,3, Zr до 0,3, прочие примеси 0,4) подвергают плазменно-электролитической обработке в гальваностатическом режиме при плотности тока 0,2 А/см2 в течение 10 мин в электролите, содержащем, г/л:

фосфат натрия15
наночастицы кобальта 1,0
додецилсульфат натрия 0,2.

Далее обработку проводят аналогично примеру 1, используя подготовленную суспензию: на 100 мл дистиллированной воды 60 г ультрадисперсного ПТФЭ и 5,1 г продукта обработки смеси моно- и диалкилфенолов окисью этилена.

Отжиг защитного покрытия осуществляют при 370ºС в течение 15 мин.

Общая толщина покрытия - 14 мкм, значение коэрцитивной силы при комнатной температуре 510 Э, при 2 К - 1004 Э.

Значение модуля импеданса поверхности |Z|f=0,02Гц составляет 7,7·10 8 Ом·см2.

Класс C25D11/26 тугоплавких металлов или их сплавов

способ формирования покрытий пентаоксида тантала на подложке -  патент 2518257 (10.06.2014)
способ модифицирования поверхности титана -  патент 2516142 (20.05.2014)
способ формирования пористого оксида на сплаве титан-алюминий -  патент 2509181 (10.03.2014)
кальций-фосфатное биологически активное покрытие на имплантате -  патент 2507316 (20.02.2014)
способ получения биосовместимого покрытия на стоматологических имплантатах -  патент 2507315 (20.02.2014)
способ модифицирования поверхности титана и его сплавов -  патент 2496924 (27.10.2013)
способ получения пористого анодного оксида титана -  патент 2495963 (20.10.2013)
способ получения декоративных покрытий -  патент 2484181 (10.06.2013)
способ микродугового оксидирования присадочных прутков из титанового сплава для антифрикционной наплавки -  патент 2483146 (27.05.2013)
способ нанесения покрытий на титан и его сплавы методом электроискрового легирования в водных растворах при повышенных давлениях -  патент 2476627 (27.02.2013)
Наверх