оптическая система для определения пространственного положения магистрального трубопровода

Классы МПК:G01B21/00 Приспособления или их детали к измерительным устройствам, не относящиеся к конкретному типу измерительных устройств, упомянутым в других группах данного подкласса
Автор(ы):, , , , ,
Патентообладатель(и):ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ "ГАЗПРОМЭНЕРГОДИАГНОСТИКА" (RU)
Приоритеты:
подача заявки:
2009-12-15
публикация патента:

Изобретение относится к трубопроводному транспорту и может быть использовано для определения пространственного положения магистральных трубопроводов (МТ) в опасных местах их прохождения, например при пересечении дорог и взаимных пересечениях. Заявленная оптическая система содержит n источников света, расположенных вдоль трубопровода с известным пространственным шагом и оптически согласованных с позиционно-чувствительным фотоприемником. Причем источники света различаются или по спектру излучения, или по поляризации излучения, или по интенсивности излучения (n=1, 2, оптическая система для определения пространственного положения   магистрального трубопровода, патент № 2476822 ). Технический результат - упрощение интерпретации получаемых результатов измерений при большом количестве источников света, расположенных на МТ. 4 з.п. ф-лы, 2 ил. оптическая система для определения пространственного положения   магистрального трубопровода, патент № 2476822

оптическая система для определения пространственного положения   магистрального трубопровода, патент № 2476822 оптическая система для определения пространственного положения   магистрального трубопровода, патент № 2476822

Формула изобретения

1. Оптическая система для определения пространственного положения магистрального трубопровода, содержащая n источников света, расположенных вдоль трубопровода с известным пространственным шагом и оптически согласованных с позиционно-чувствительным фотоприемником, отличающаяся тем, что источники света различаются или по спектру излучения, или по поляризации излучения, или по интенсивности излучения (n=1, 2, оптическая система для определения пространственного положения   магистрального трубопровода, патент № 2476822 ).

2. Оптическая система по п.1, отличающаяся тем, что в качестве источников света применяют источники видимого света.

3. Оптическая система по п.1, отличающаяся тем, что в качестве источников света применяют источники инфракрасного света, имеющие максимум интенсивности спектрального излучения, лежащий в атмосферных окнах прозрачности 1,8; 2,1оптическая система для определения пространственного положения   магистрального трубопровода, патент № 2476822 2,4; 3,3оптическая система для определения пространственного положения   магистрального трубопровода, патент № 2476822 4,2; 4,5оптическая система для определения пространственного положения   магистрального трубопровода, патент № 2476822 5,1 и 8оптическая система для определения пространственного положения   магистрального трубопровода, патент № 2476822 13 мкм.

4. Оптическая система по п.1, отличающаяся тем, что источники света и позиционно-чувствительный приемник расположены в светонепрозрачном корпусе.

5. Оптическая система по п.1, отличающаяся тем, что дополнительно содержит второй позиционно-чувствительный фотоприемник, оптически согласованный с источником света, при этом фоточувствительная поверхность второго фотоприемника ортогональна фоточувствительной поверхности первого фотоприемника.

Описание изобретения к патенту

Изобретение относится к трубопроводному транспорту и может быть использовано для определения пространственного положения магистральных трубопроводов (МТ) в наиболее опасных местах их прохождения, например местах пересечений МТ и местах их переходов через железные и автомобильные дороги.

Известна оптическая система аналогичного назначения, принятая за прототип, содержащая n источников света, расположенных вдоль трубопровода с известным пространственным шагом и оптически согласованных с позиционно-чувствительным фотоприемником / Патент Японии № 9196637, кл. 601 В 11/26, 1997/.

Недостатком прототипа является сложность интерпретации получаемых результатов, когда количество n источников света велико.

Техническим результатом, получаемым от внедрения изобретения, является упрощение интерпретации получаемых результатов измерений при большом количестве источников света, расположенных на МТ.

Данный технический результат достигают за счет того, что в известной системе, содержащей n источников света, расположенных вдоль трубопровода с известным пространственным шагом и оптически согласованных с позиционно-чувствительным фотоприемником, источники света различаются или по спектру излучения, или по поляризации излучения, или по интенсивности излучения (n=1, 2, оптическая система для определения пространственного положения   магистрального трубопровода, патент № 2476822 ).

В качестве источников света применяют источники видимого света.

В качестве источников света применяют источники инфракрасного света, имеющих максимум интенсивности спектрального излучения, лежащего в атмосферных окнах прозрачности 1,8; 2,1оптическая система для определения пространственного положения   магистрального трубопровода, патент № 2476822 2,4; 3,3оптическая система для определения пространственного положения   магистрального трубопровода, патент № 2476822 4,2; 4,5оптическая система для определения пространственного положения   магистрального трубопровода, патент № 2476822 5,1 и 8оптическая система для определения пространственного положения   магистрального трубопровода, патент № 2476822 13 мкм.

Источники света и позиционно-чувствительный приемник расположены в светонепрозрачном корпусе.

Оптическая система дополнительно содержит второй позиционно-чувствительный фотоприемник, оптически согласованный с источником света, при этом фоточувствительная поверхность второго фотоприемника ортогональна фоточувствительной поверхности первого фотоприемника.

Изобретение поясняется чертежами. На фиг.1 представлена схема оптической системы; на фиг.2 - четыре положения следа светового луча на фоточувствительном слое позиционно-чувствительного фотоприемника (ПЧФ).

Оптическая система содержит источники 1 света, расположенные вдоль МТ 2 с известным пространственным шагом (на фиг.1 расположены четыре источника света вдоль продольной оси трубопровода. В общем случае их может быть n, где n=1, 2, оптическая система для определения пространственного положения   магистрального трубопровода, патент № 2476822 ).

Имеется также ПЧФ 3, оптически согласованный через объектив 4 с источниками 1 света.

В качестве источников света могут быть применены светодиоды или использоваться маркеры, освещенные дополнительно введенным источником света (на фиг.1 не показан). В последнем случае источники света 1 будут выполнены в виде источников рассеянного света.

Источники света 1 различаются друг от друга или по спектру излучения, или по степени поляризации, или по интенсивности излучения. В противном случае при значительной величине n источников света 1 интерпретация результатов будет затруднена.

В качестве источников света 1 можно применить источники видимого или инфракрасного света. В последнем случае спектр излучения инфракрасного света должен лежать в атмосферных окнах, обладающих максимальным коэффициентом пропускания оптического излучения.

ПЧФ 3 может быть выполнен в виде матричного фотоприемника.

Система может дополнительно содержать второй ПЧФ (не показан), фоточувствительная поверхность которого ориентирована ортогонально плоскости фоточувствительной поверхности ПЧФ 3 для визирования изображений в плоскости X0Y.

Вся оптическая система может быть размещена в светонепрозрачном корпусе (не показан).

Оптическая система работает следующим образом.

При возникновении местных деформаций МТ 2 он будет подвергаться изгибам в направлении осей Y и Z и смещению вдоль оси X.

Источники 1 света, закрепленные на МТ 2, будут смещаться от своего первоначального положения в плоскостях Y0Z и X0Y.

Положения изображенных а, б, в, г (фиг.2) источников 1 света считываются на входах ПЧФ 3 с помощью компьютера (не показан), который выдает информацию о пространственных координатах всех источников 1 света, закрепленных на МТ 2 с заданным пространственным шагом вдоль оси X.

Пространственный шаг между источниками света 1 задается исходя из компромисса между максимальным пространственным разрешением смещений изображений а, б, в, г и возможностью распознавания изображений от различных источников 1 света на фоточувствительной поверхности ПЧФ 3.

Повысить пространственное разрешение смещения изображений а, б, в, г, различных источников 1 на фоточувствительной поверхности ПЧФ позволяет «разметка» различных источников 1 по спектру, поляризации и интенсивности света.

По пространственному положению различных точек МТ 2 компьютер оценивает степень деформации контролируемого участка трубопровода и его техническое состояние.

Светонепрозрачный корпус позволяет использовать оптическую систему в трассовых условиях при любой погоде, а также в подземном варианте.

Класс G01B21/00 Приспособления или их детали к измерительным устройствам, не относящиеся к конкретному типу измерительных устройств, упомянутым в других группах данного подкласса

акустооптический способ измерения смещений -  патент 2523780 (20.07.2014)
адаптивный датчик идентификации и контроля положения изделий повышенной надежности -  патент 2522114 (10.07.2014)
адаптивный датчик идентификации и контроля положения нагретых неметаллических и ненагретых неметаллических изделий -  патент 2518977 (10.06.2014)
способ и устройство для измерения толщины отложений -  патент 2518017 (10.06.2014)
способ сбора и обработки информации о поверхности образца -  патент 2516022 (20.05.2014)
адаптивный датчик идентификации и контроля положения четырех видов изделий -  патент 2515046 (10.05.2014)
цифровой многокомпонентный датчик перемещений -  патент 2500986 (10.12.2013)
способ контроля линейных и угловых отклонений от вертикального направления для дистанционного мониторинга антенно-мачтовых сооружений -  патент 2477454 (10.03.2013)
устройство идентификации и контроля положения изделий -  патент 2473045 (20.01.2013)
автономный контроль глубины для скважинного оборудования -  патент 2461708 (20.09.2012)
Наверх