плазменно-реактивный электродинамический двигатель

Классы МПК:F03H1/00 Использование плазмы для получения реактивной тяги
Автор(ы):, , ,
Патентообладатель(и):Государственное образовательное учреждение высшего профессионального образования "Сибирский государственный аэрокосмический университет имени академика М.Ф. Решетнева" (СибГАУ) (RU)
Приоритеты:
подача заявки:
2011-08-05
публикация патента:

Изобретение относится к аэрокосмической технике и может быть использовано в качестве двигателя и источника электроэнергии для аэрокосмических транспортных средств и аппаратов. Плазменно-реактивный электродинамический двигатель содержит ускоритель заряженных частиц и взаимозамещаемые диффузор-конфузор. Двигатель включает электродуговой плазмотрон с анодом и катодом, управляющие и ускоряющие электроды электрического поля, электронные мембраны, поляризующиеся электроды, резонансные цепи конденсаторов, распределители напряжения, магнитопровод. На магнитопроводе выполнены обмотки - первичная со средней точкой, соединенной с массой двигателя, обмотка катионного напряжения, обмотка электрической дуги и токовая обмотка. Также в зазоре магнитопровода установлен якорь. Якорь жестко соединен с корпусом аппарата. Магнитопровод содержит трехпозиционный переключатель, бортовой источник электроэнергии, преобразователь напряжения электрической дуги, ускоритель заряженных частиц. Ускоритель заряженных частиц состоит из преобразователя катионного напряжения и электродов ускорителя катионов, диафрагмы, блока управления диафрагмами и бортового компьютера с электронной программой управления двигателем. Описана взаимосвязь конструктивных элементов ускорителя заряженных частиц. Техническим результатом является увеличение срока работы и радиуса действия аэрокосмического аппарата, устранение радиационной опасности для персонала и окружающей среды. 1 ил. плазменно-реактивный электродинамический двигатель, патент № 2472964

плазменно-реактивный электродинамический двигатель, патент № 2472964

Формула изобретения

Плазменно-реактивный электродинамический двигатель, содержащий ускоритель заряженных частиц, взаимозамещаемые диффузор-конфузор, отличающийся тем, что двигатель включает электродуговой плазмотрон с анодом и катодом, управляющие и ускоряющие электроды электрического поля, скрещенного с полем электрической дуги плазмотрона, электронные мембраны, поляризующиеся электроды, резонансные цепи конденсаторов, распределители напряжения, магнитопровод, на котором выполнены обмотки - первичная со средней точкой, соединенной с массой двигателя, обмотка катионного напряжения, обмотка электрической дуги и токовая обмотка, а в зазоре магнитопровода установлен якорь, жестко соединенный с корпусом аппарата, трехпозиционный переключатель, бортовой источник электроэнергии, преобразователь напряжения электрической дуги, ускоритель заряженных частиц, состоящий из преобразователя катионного напряжения и электродов ускорителя катионов, диафрагмы, блок управления диафрагмами и бортовой компьютер с электронной программой управления двигателем, при этом катод электродугового плазмотрона соединен со средней точкой первичной обмотки и массой двигателя, а анод подключен к плюсовой клемме преобразователя напряжения электрической дуги, минусовая клемма которого соединена с массой двигателя, управляющие и ускоряющие электроды скрещенного электрического поля через распределители напряжения подключены к резонансным цепям конденсаторов, настроенным на резонанс токов на рабочей частоте с симметричными плечами первичной обмотки, концы которой соединены с поляризующимися электродами, обмотка катионного напряжения соединена с преобразователем катионного напряжения, плюсовая клемма которого соединена с массой, а минусовая клемма подключена к электродам ускорителя катионов рабочей среды, обмотка электрической дуги подключена к бортовому источнику электроэнергии и к преобразователю напряжения электрической дуги, минусовая клемма которого соединена с массой двигателя, токовая обмотка через трехпозиционный переключатель соединена с якорем, а соответствующие управляющие выходы бортового компьютера соединены с входом управления распределителя напряжения, трехпозиционного переключателя, бортового источника электроэнергии, преобразователя напряжения электрической дуги, преобразователя катионного напряжения и блока управления диафрагмами.

Описание изобретения к патенту

Изобретение относится к аэрокосмической технике и может быть использовано в качестве двигателя и источника электроэнергии для аэрокосмических транспортных средств и аппаратов.

Известны плазменно-ионные двигатели [патент ФРГ № 682150 «Ионный двигатель»], [патент RU № 2024785 «Электрореактивная двигательная установка»], содержащие ионизаторы рабочего тела, формирователи плазмы, ускорители заряженных частиц, поток которых создает реактивную тягу, движущую транспортное средство. Двигатели такого типа имеют существенные недостатки. Им требуются источники электроэнергии соответствующей мощности и соответствующие запасы топлива, т.к. они расходуют электроэнергию на ионизацию рабочего тела, получение плазмы, ускорение заряженных частиц, кроме того, они расходуют рабочее тело, запасы которого на борту весьма ограничены. Все это снижает КПД, коэффициент полезной нагрузки, ограничивает радиус действия транспортного средства и время жизни аэрокосмического аппарата.

Прототипом предлагаемого двигателя является двигатель [патент RU № 2397363 «Плазменно-ионный комбинированный воздушно-реактивный двигатель»], содержащий генератор электрической энергии, использующий энергию ядерных реакций, инициируемых нейтронным излучением, ионизирующие камеры рабочей среды внешней и запасенной, ускоритель заряженных частиц, создающих реактивную тягу двигателя, и взаимозамещаемые диффузор-конфузор для изменения направления тяги.

Недостатками прототипа являются ограниченное время работы и радиус действия аэрокосмического аппарата, вызванное расходованием запасенной рабочей среды и ядерного топлива, запасы которых на борту весьма ограничены, а также радиационная опасность ядерных реакций и нейтронного излучения, негативно воздействующих на персонал и окружающую среду.

Задачей предлагаемого плазменно-реактивного электродинамического двигателя является увеличение срока работы и радиуса действия аэрокосмического аппарата, а также устранение радиационной опасности, свойственной прототипу.

Данная задача решается за счет того, что в заявленном плазменно-реактивном электродинамическом двигателе рабочую среду ионизируют электродуговым плазмотроном, содержащим анод и катод. Двигатель также содержит управляющие и ускоряющие электроды электрического поля, скрещенного с полем электрической дуги плазмотрона, электронные мембраны, поляризующиеся электроды, резонансные цепи последовательно соединенных конденсаторов, распределители напряжения, магнитопровод, на котором выполнены обмотки - первичная со средней точкой, соединенной с массой двигателя, обмотка катионного напряжения, обмотка дуги и токовая обмотка, а в зазоре магнитопровода установлен якорь, жестко соединенный с корпусом аппарата, трехпозиционный переключатель, бортовой источник электроэнергии, преобразователь напряжения электрической дуги, ускоритель заряженных частиц, состоящий из преобразователя катионного напряжения и электродов ускорителя заряженных частиц, диафрагмы, блок управления диафрагмами, взамозамещаемые диффузор (конфузор) и бортовой компьютер с электронной программой управления двигателем, при этом катод электродугового плазмотрона соединен со средней точкой первичной обмотки и с массой двигателя, а анод подключен к плюсовой клемме преобразователя напряжения электрической дуги, управляющие и ускоряющие электроды скрещенного электрического поля через распределители напряжения подключены к резонансным цепям последовательно соединенных конденсаторов, настроенным на резонанс токов на рабочей частоте с симметричными плечами первичной обмотки, концы которой соединены с поляризующимися электродами, обмотка катионного напряжения соединена с преобразователем катионного напряжения, плюсовая клемма которого соединена с массой, а минусовая клемма подключена к электродам ускорителя катионов рабочей среды, обмотка электрической дуги подключена к бортовому источнику электроэнергии и к преобразователю напряжения для электрической дуги, минусовая клемма которого соединена с массой двигателя, токовая обмотка через трехпозиционный переключатель соединена с якорем, а соответствующие управляющие выходы бортового компьютера соединены с входом управления трехпозиционного переключателя, бортового источника электроэнергии, преобразователя напряжения электрической дуги, преобразователя катионного напряжения, распределителя напряжения и блока управления диафрагмами.

Схема предлагаемого двигателя представлена на чертеже.

Плазменно-реактивный электродинамический двигатель содержит электродуговой плазмотрон 1 с анодом и катодом, управляющие электроды 2 и ускоряющие электроды 4 скрещенного электрического поля с полем электрической дуги плазмотрона, электронные мембраны 3, поляризующиеся электроды 5, соединенные с концами 6 первичной обмотки 11, имеющую среднюю точку 8 и соединенные с резонансными цепями конденсаторов 7, подключенными другими концами к средней точке 8, соединенной с массой двигателя 9, а резонансные конденсаторы 7 через распределители напряжения 10 соединены с управляющими 2 и ускоряющими электродами 4 скрещенного электрического поля. Электродинамический двигатель содержит магнитопровод 12, на котором выполнена первичная обмотка 11, обмотка катионного напряжения 13, обмотка электрической дуги 14 и токовая обмотка 15, соединенная через трехпозиционный переключатель 16 «вперед - назад - нейтраль» с якорем 17, который расположен в зазоре магнитопровода 12 и жестко скреплен с корпусом аэрокосмического аппарата 18, бортовой источник электроэнергии 19, преобразователь напряжения 20 для электрической дуги, у которого минусовая клемма соединена с массой двигателя 9, плюсовая клемма преобразователя напряжения 20 соединена с анодом плазмотрона 1, а катод плазмотрона соединен со средней точкой 8 и с массой двигателя 9. Двигатель также содержит ускоритель заряженных частиц, состоящий из преобразователя катионного напряжения 21 и электродов ускорителя катионов 22, преобразователь катионного напряжения 21 соединен минусовой клеммой с электродами 22, а его плюсовая клемма соединена с массой двигателя 9, взаимозамещаемые конфузор (диффузор) 23 (24) диафрагмы 25, блок управления диафрагмами 26 и бортовой компьютер 27, управляющий работой двигателя по заданной электронной программе, а соответствующие управляющие выходы бортового компьютера 27 соединены с входом управления распределителя напряжения 10, трехпозиционного переключателя 16, бортового источника электроэнергии 19, преобразователя напряжения электрической дуги 20, преобразователя катионного напряжения 21 и блока управления диафрагмами 26.

Работает плазменно-реактивный электродинамический двигатель следующим образом. От бортового источника электроэнергии 19 подают напряжение на обмотку 14 электрической дуги и через преобразователь напряжения 20 электрической дуги - на электродуговой плазмотрон 1, ионизирующий рабочую среду. Колебания рабочей частоты в обмотке 14 индуцируются в первичной обмотке 11, настроенной в резонанс на рабочую частоту с резонансными цепями конденсаторов 7, с которых через распределители напряжения 10 подают симметричные относительно средней точки 8 противофазные напряжения на управляющие 2 и ускоряющие 4 электроды скрещенного электрического поля с полем электрической дуги плазматрона 1. В плазмотроне поджигают электрическую дугу, которая ионизирует рабочую среду - воздух, поступающий в плазмотрон, через открытую диафрагму 25 взаимозамещаемых диффузора 23 (конфузора 24). Под действием положительной полуволны напряжения на управляющем 2 и ускоряющем 4 электроде, электроны из плазмотрона 1 устремляются к управляющему электроду 2, получая потенциал управляющего электрического поля, проходят через электронную мембрану 3, которая пропускает сквозь себя электроны и не пропускает катионы, атомы и молекулы рабочей среды, ускоряются электрическим полем ускоряющего электрода 4, образуя пучок электронной плазмы, который отдает свою энергию поляризующемуся электроду 5, заряжая его отрицательно, а катод плазмотрона 1 соединенный со средней точкой 8 первичной обмотки 11, заряжается катионами ионизируемой рабочей среды положительно. Под действием разности потенциалов между катодом плазмотрона 1 и поляризующимся электродом 5 идет импульс электронного тока по одной половине первичной обмотки 11, создавая соответствующий магнитный поток в магнитопроводе 12, а электроны, приходящие на катод плазмотрона 1, рекомбинируют с катионами рабочей среды, превращая их в атомы и молекулы рабочей среды, которая вновь подвергается ионизации в электродуговом плазмотроне. При смене полярности полуволны напряжения на управляющем электроде 2 и ускоряющем электроде 4 импульс тока идет по другому плечу первичной обмотки 11, создавая в магнитопроводе 12 магнитный поток противоположного направления и рекомбинируя катионы в атомы и молекулы рабочей среды, вновь подвергаемой ионизации. Переменный магнитный поток в магнитопроводе 12 индуцирует соответствующие ЭДС в обмотках 13, 14, 15. ЭДС обмотки катионного напряжения 13, соединенной с преобразователем катионного напряжения 21, преобразуется в рабочее напряжение и подается с минусовой клемы преобразователя 21 на электроды 22 ускорителя заряженных частиц (катионов рабочей среды), под действием которого катионы разгоняются до скоростей 105-106 м/с и вылетают наружу сквозь конфузор 24, создавая реактивную тягу, движущую аппарат в атмосфере планеты. По мере разряжения атмосферы за бортом порядка 10-3 кг/см2, рабочее напряжение на электродах 22 отключают, диафрагмы 25 диффузора и конфузора герметично закрывают, двигатель создает электродинамическую тягу, не расходуя запасенную рабочую среду. ЭДС обмотки электрической дуги 14 подают в бортовой источник электроэнергии 19 для питания бортовой сети и аккумулированная электроэнергия на случай повторных запусков двигателя, а также через преобразователь напряжения 20 для электрической дуги, с его плюсовой клеммы, подают рабочее напряжения на анод электродугового плазмотрона 1, ионизирующего рабочую среду. ЭДС токовой обмотки 15 через трехпозиционный переключатель 16 подают на якорь 17, жестко скрепленный с корпусом 18 аэрокосмического аппарата и установленный в зазоре магнитопровода 12. В результате взаимодействия магнитного потока с электрическим током в якоре создается сила тяги, движущая аппарат в направлении вектора импульса силы, которое задается направлением вектора силы тока в якоре с помощью трехпозиционного переключателя 16. При торможении двигателем переключатель 16 устанавливают в положение «назад» и подают напряжение на электроды 22 со стороны конфузора 24. Вектор реактивной тяги и вектор электродинамической тяги будут направлены в противоположную сторону движения «вперед», аппарат будет тормозиться, снижая скорость. Снизив скорость до нуля, может начать движение в противоположном направлении. Работой двигателя управляет бортовой компьютер 27 по заданной электронной программе, путем подачи соответствующих команд на управляющие входы распределителя напряжения 10, трехпозиционного переключателя 16, бортового источника электроэнергии 19, преобразователя напряжения 20 электрической дуги, преобразователя катионного напряжения 21 и блока управления диафрагмами 26.

В предлагаемом плазменно-реактивном электродинамическом двигателе рабочую среду ионизируют электродуговым плазмотроном 1, формируют пучки плазмы и ускоряют частицы заряженной плазмы с помощью скрещенного с полем электрической дуги электрического поля, которое создают аксиально-симметричной системой управляющего и ускоряющего электродов 2 и 4 путем подачи на них соответствующих напряжений (метод «ионной пушки»). Электрическую энергию, необходимую для выполнения вышеуказанных операций и процессов, получают путем преобразования электростатической энергии взаимодействия сжатых в пучок электронов в электромагнитный процесс рабочей частоты, на которую настроены параллельные колебательные контуры, образованные симметричными плечами первичной обмотки 11 и резонансными цепями конденсаторов 7, включенными между концами 6 первичной обмотки 11 и ее средней точкой 8. Электродинамическое тяговое усилие, движущее аппарат, создают путем взаимодействия переменного магнитного потока магнитопровода 12 с током якоря 17, расположенного в зазоре магнитопровода и жестко скрепленного с корпусом аппарата 18. Электродуговая ионизация воздушной среды атмосферы, формирование пучка заряженной плазмы и ускорение потока заряженных частиц (катионов рабочей среды), вылетающих через конфузор двигателя, создают реактивную тягу, движущую аэрокосмический аппарат в атмосфере.

С резонансных конденсаторов 7, через распределители напряжения 10, подают соответствующие напряжения на управляющие 2 и ускоряющие 4 электроды, создающие электрическое поле, формирующее и ускоряющее пучки электронной плазмы, электростатическую энергию которых преобразуют в электроэнергию рабочей (бортовой) частоты. Электроны, пройдя по первичной цепи (обмотка 11) и, совершив в ней электрическую работу, приходят на катод электродугового плазмотрона 1, где рекомбинируют катионы в атомы и молекулы рабочей среды, вновь подвергающейся ионизации электрической дугой. Данный процесс ионизации - рекомбинации рабочей среды производится многократно в герметичном объеме, поэтому рабочая среда не расходуется в режиме «безвоздушное пространство» (диафрагмы герметично закрыты) и электродинамический двигатель может работать неограниченное время.

Электрическую энергию, необходимую для выполнения предложенных выше операций и процессов, получают путем преобразования электростатической энергии взаимодействия сжатых в пучок электронов в электромагнитный процесс рабочей (бортовой) частоты. Электроны, совершив работу в электрической цепи, переходят на катод плазмотрона, где рекомбинируют катионы в атомы и молекулы рабочей среды, вновь подвергаемой ионизации электрической дугой в плазмотроне.

Процесс ионизации - рекомбинации рабочей среды производится многократно в герметичном объеме, поэтому рабочая среда не расходуется, а электродинамический двигатель в режиме герметично закрытых диафрагм может работать неограниченное время, поэтому теоретически радиус действия космического аппарата также не ограничен, при этом не образуются вредные выбросы и отходы, не создается радиационная опасность, негативно воздействующая на персонал и окружающую среду.

Класс F03H1/00 Использование плазмы для получения реактивной тяги

плазменный реактивный двигатель на основе эффекта холла -  патент 2527267 (27.08.2014)
катод плазменного ускорителя (варианты) -  патент 2522702 (20.07.2014)
способ ускоренных испытаний катодов плазменных двигателей и устройство для его осуществления -  патент 2521823 (10.07.2014)
средство для перемещения в космическом пространстве -  патент 2520856 (27.06.2014)
способ нейтрализации объемного заряда ионного потока -  патент 2520270 (20.06.2014)
циклотронный плазменный двигатель -  патент 2517004 (27.05.2014)
эрозионный импульсный плазменный ускоритель -  патент 2516011 (20.05.2014)
устройство выброса ионов на эффекте холла -  патент 2510543 (27.03.2014)
двигатель с замкнутым дрейфом электронов -  патент 2509918 (20.03.2014)
модель стационарного плазменного двигателя -  патент 2509228 (10.03.2014)
Наверх