способ уменьшения ползучести и увеличения модуля упругости сверхвысокомолекулярных высокопрочных высокомодульных полиэтиленовых волокон

Классы МПК:D01F11/14 обработка органическими соединениями, например высокомолекулярными соединениями
D01F11/16 обработка физико-химическими способами
C08J3/28 обработка волновой энергией или облучением частицами
Автор(ы):, , , ,
Патентообладатель(и):Учреждение Российской академии наук Институт металлургии и материаловедения им. А.А. Байкова РАН (RU)
Приоритеты:
подача заявки:
2011-09-30
публикация патента:

Изобретение относится к сверхвысокомолекулярным высокопрочным высокомодульным полиэтиленовым волокнам (СВМПЭ-волокна), а именно к области улучшения физико-механических характеристик волокон: к снижению их ползучести и увеличению модуля упругости. Способ включает обработку СВМПЭ-волокна высокочастотным емкостным разрядом с частотой ВЧ-тока 13,56 МГц, энергией ионов 10-100 эВ, плотностью ионного тока 0,3-0,6 А/м2, давлении 13-133 Па. Длительность обработки - 0,5-3 мин. В качестве плазмообразующего газа применяют смесь аргона с пропан-бутаном. Технический результат - значительное уменьшение ползучести СВМПЭ-волокна, в 2,75 раза, и повышение модуля упругости до 25%. 5 ил., 2 пр.

способ уменьшения ползучести и увеличения модуля упругости сверхвысокомолекулярных   высокопрочных высокомодульных полиэтиленовых волокон, патент № 2467101 способ уменьшения ползучести и увеличения модуля упругости сверхвысокомолекулярных   высокопрочных высокомодульных полиэтиленовых волокон, патент № 2467101 способ уменьшения ползучести и увеличения модуля упругости сверхвысокомолекулярных   высокопрочных высокомодульных полиэтиленовых волокон, патент № 2467101 способ уменьшения ползучести и увеличения модуля упругости сверхвысокомолекулярных   высокопрочных высокомодульных полиэтиленовых волокон, патент № 2467101 способ уменьшения ползучести и увеличения модуля упругости сверхвысокомолекулярных   высокопрочных высокомодульных полиэтиленовых волокон, патент № 2467101

Формула изобретения

Способ уменьшения ползучести и увеличения модуля упругости сверхвысокомолекулярных высокопрочных высокомодульных полиэтиленовых волокон, включающий обработку СВМПЭ-волокна высокочастотным емкостным разрядом с частотой ВЧ-тока 13,56 МГц, при энергии ионов 10-100 эВ, плотности ионного тока 0,3-0,6 А/м2, давлении 13-133 Па, продолжительности экспозиции 0,5-3 мин, отличающийся тем, что обработка волокна ведется в смеси плазмообразующих газов аргона с пропан-бутаном.

Описание изобретения к патенту

Изобретение относится к сверхвысокомолекулярным высокопрочным высокомодульным полиэтиленовым волокнам (СВМПЭ-волокна), а именно к области улучшения их физико-механических характеристик: снижению ползучести и увеличению модуля упругости. СВМПЭ-волокна с улучшенными свойствами могут использоваться в качестве армирующих наполнителей для конструкционных органопластиков для создания особо прочных тканей и баллистической защиты, а также в различных областях техники, например в судостроении, авиастроении, вертолетостроении и автомобилестроении.

Постепенная деформация СВМПЭ-волокон при постоянно действующей силе, то есть ползучесть, заметно ограничивает области применения СВМПЭ-волокон в различных областях техники.

Известны различные варианты снижения ползучести, например, увеличением предварительной вытяжки волокон (Веттергень В.И., Иванькова Е.М., Крючков М.А., Марихин В.А., Мясникова Л.П., Якушев П.Н. Влияние надмолекулярной структуры на энергию активации установившейся ползучести ориентированного сверхвысокомолекулярного полиэтилена // ФТТ. - 2005. - том 47. - вып.5 - С.937-943). Однако этот путь технически сложен и не выходит за рамки лабораторных экспериментов.

Известно исследование влияния магнитного поля на скорость ползучести полимеров с глобулярной структурой (Песчанская Н.Н., Синани А.Б. Влияние магнитного поля на скачки деформации наноуровня в полимерах // ФТТ. - 2008. - Том 50, вып.1. - С.177-181). В работе обнаружено влияние магнитного поля на скачки деформации наноуровня в твердых полимерах. Однако выводов о возможности использования этого эффекта для управления ползучестью нет.

Известна работа для фирмы DSM, производящей СВМПЭ-волокна, посвященная их ползучести (Jacobs Martinus J.N. Creep of Gel-Spun Polyethylene fibres: Improvements by impregnation and crosslinking. Ph.D Thesis. - Einhhoven: Technishe Universiteit, 1999. - Proefschrift. - ISBN 90-386-2741-6 NUGI 813). В работе рассмотрены механизмы ползучести и сделан вывод о том, что ее снижение может быть достигнуто ультрафиолетовым облучением волокна. Однако известно, что при таком облучении трудно сохранить исходные свойства волокна (Харченко Е.Ф. Проблемы получения органопластиков на основе высокоориентированных полиэтиленовых волокон // Хим. Волокна - 1990. - № 4. - С.36-39). Кроме того, в работе нет конкретных рекомендаций по применению ультрафиолетового излучения для снижения ползучести СВМПЭ-волокна.

Наиболее близким техническим решением к предложенному способу является работа "Способ получения суперпрочного легкого композиционного материала" (Патент РФ № 2419691, кл. D01F 11/14, 2009 г.), путем обработки упрочняющего СВМПЭ-волокна ВЧ-плазмой, которая служила прототипом. По указанному способу многофиламентные высокопрочные высокомодульные полиэтиленовые волокна или ткань различных видов переплетения на их основе обрабатывают высокочастотным (ВЧ) емкостным разрядом в среде плазмообразующего газа - аргона, с частотой ВЧ-тока 13,56 МГц, при энергии ионов 10-100 эВ, плотности ионного тока 0,3-0,6 А/м2, давлении 13-133 Па, продолжительность экспозиции составляет 0,5-3 мин. В результате обработки волокно (или ткань) приобретает высокую адгезионную способность, необходимую для создания композиционного материала. Недостатком указанного способа является резкое снижение ползучести волокна при обработке его в плазмообразующем газе аргоне.

Задачей, на решение которой направлено настоящее изобретение, является создание способа уменьшения ползучести и увеличение модуля сверхвысокомолекулярного высокопрочного высокомодульного полиэтиленового волокна, который бы обеспечивал получение СВМПЭ-волокна с высокими физико-механическими свойствами.

Технический результат от использования изобретения заключается в значительном уменьшении ползучести СВМПЭ-волокна, в 2,75 раза, и повышении модуля до 25%.

Технический результат достигается тем, что СВМПЭ-волокно (или ткань на его основе) обрабатывают высокочастотным (ВЧ) емкостным разрядом в среде плазмообразующего газа, который представляет собой смесь газов - аргона с пропан-бутаном; с частотой ВЧ-тока 13,56 МГц; при энергии ионов 10-100 эВ; плотностью ионного тока 0,3-0,6 А/м2; давлении 13-133 Па; продолжительность экспозиции составляет 0,5-3 мин.

В отличие от предложенного в прототипе способа согласно заявляемому способу обработку СВМПЭ-волокна (или ткани) осуществляют воздействием ВЧЕ-разряда, в котором в качестве плазмообразующего газа вместо аргона используется смесь газов - аргона с пропан-бутаном.

При плазменной обработке на материал действуют частицы плазмы, имеющие высокую кинетическую и потенциальную энергию. При обработке ВЧ-плазмой кинетическая энергия ионов плазмообразующего газа составляет 10-100 эВ, а потенциальная равна энергии потенциала ионизации газов, составляющих плазму.

Под воздействием плазмы изменяется структура и свойства СВМПЭ-волокна и строение его поверхности.

Эксперименты показывают, что состав плазмообразующего газа имеет большое значение в изменении свойств полиэтиленового волокна. При его обработке в плазме аргона, аргона в смеси с воздухом или азотом, прочность и модуль волокна снижаются, а ползучесть волокна резко возрастает.

Только в случае использования в качестве плазмообразующего газа смеси аргона с пропан-бутаном происходит увеличение модуля и снижение ползучести СВМПЭ-волокна.

Сущность изобретения заключается в том, что в исходном состоянии (Фиг.1, а) филаменты волокна имеют близко расположенные друг к другу поперечные трещины. Они хорошо видны на микрофотографии в виде черных полос поперек волокна. Полосы расположены близко друг к другу на расстоянии 33,2; 54,8; 64,1 мкм. В результате обработки волокна в плазме пропан-бутана (Фиг.1, б) трещины залечиваются, их количество по длине волокна уменьшается, расстояние между ними увеличивается. Видно, что расстояние между трещинами возросло до 128,9; 153,5 мкм. Поверхность волокна стала более гладкой. В результате действия плазмы пропан-бутана изменяются структура волокна и его поверхности, что ведет к снижению его ползучести и увеличению модуля.

Следующие примеры подтверждают сущность изобретения.

Пример 1.

Влияние ВЧЕ-плазменной обработки СВМПЭ-волокна в смеси плазмообразующих газов аргона с пропан-бутаном на его ползучесть.

СВМПЭ-волокно марки Dyneema®SK-75 от DSM, прочностью при растяжении 3,4 ГПа, удлинением при разрушении 3,8%, плотностью 0,97 г/см3, количеством филаментов (мононитей) ~1020 в одном пучке волокна, обрабатывали в плазмообразующем газе, состоящем из смеси газов аргона с пропан-бутаном в отличие от прототипа, в котором использовался аргон.

В изображенную на Фиг.2 вакуумную камеру (4) между электродами (1) помещают обрабатываемое волокно. Камеру закрывают крышкой (2), движущейся на консоле (3). С помощью системы вакуумирования (7) камеру вакуумируют, а затем через систему напуска (5) вводят плазмообразующий газ до давления 26,6 Па. От блока питания разряда (6) на электроды подают напряжение и зажигают разряд с частотой 13,56 МГц и плотностью ионного тока 0,5 А/м2. В экспериментах плазмообразующим газом служила смесь газов аргона с пропан-бутаном в соотношении 70 и 30%, соответственно. Длительность обработки составляла 3 мин. После обработки подачу напряжения прекращают, камеру соединяют с атмосферой и вынимают волокно.

На Фиг.3 приведены кривые ползучести волокна Dyneema®SK-75 при нагрузке 1 ГПа для обработанного плазмой 1 и исходного 2 волокна. После обработки плазмой, на стадии установившейся ползучести, длительность достижения деформации в 4% возрастает с 192 до 528 ч, то есть предложенная обработка уменьшает ползучесть в 2,75 раза. На Фиг.3 приведен график 3 изменения ползучести волокна при его плазменной обработке в аргоне. При длительности действия нагрузки в течение 96 ч, наступает резкий рост деформации и при 100 ч волокно разрушается. Таким образом, замена аргона на плазмообразующую смесь газов аргон-пропан-бутан изменяет свойства волокна и резко снижает его ползучесть.

Пример 2.

Влияние ВЧЕ-плазменной обработки СВМПЭ-волокна в смеси плазмообразующих газов аргона с пропан-бутаном на его модуль упругости.

СВМПЭ-волокно марки Dyneema®SK-75 от DSM, прочностью при растяжении 3,4 ГПа, удлинением при разрушении 3,8%, плотностью 0,97 г/см3, количеством филаментов (мононитей) ~1020 в одном пучке волокна, обрабатывали в плазмообразующей смеси газов аргона 40% и 60% пропан-бутана. Режим обработки: частота 13,56 МГц, плотность ионного тока 0,6 А/м2, давление 26,6 Па, длительность обработки 3 мин.

В результате обработки модуль упругости волокна (Фиг.4, кривая 1) увеличился до ~25% с 70 до 88 ГПа по сравнению с исходным волокном (кривая 2).

Таким образом, замена аргона на плазмообразующую смесь газов из аргона с пропан-бутаном изменяет воздействие плазмы на волокно, что увеличивает его модуль. Экспериментально установлено, что соотношение газов аргона и пропан-бутана в смеси можно менять в широких пределах.

Класс D01F11/14 обработка органическими соединениями, например высокомолекулярными соединениями

Класс D01F11/16 обработка физико-химическими способами

способ упрочнения углеродного волокна -  патент 2523483 (20.07.2014)
способ получения суперпрочного легкого композиционного материала -  патент 2419691 (27.05.2011)
способ стабилизации углеродсодержащего волокна и способ получения углеродного волокна -  патент 2416682 (20.04.2011)
способ получения углеродных лент и устройство для его осуществления -  патент 2342475 (27.12.2008)
способ изготовления детали из термостойкого композитного материала, способ изготовления волокнистой конструкции, волокнистая конструкция, изготовленная данным способом, и композитный материал, содержащий данную конструкцию -  патент 2324597 (20.05.2008)
способ получения термоогнестойких текстильных материалов -  патент 2310701 (20.11.2007)
способ получения огнестойкого полиакрилонитрильного волокна для изготовления текстильных материалов -  патент 2258104 (10.08.2005)
способ получения углеродного материала -  патент 2255152 (27.06.2005)
высокотемпературная стабилизация пековых волокон при низкой концентрации окислителя -  патент 2198969 (20.02.2003)
способ поверхностной обработки волокнистых материалов на основе углеродного волокна -  патент 2080427 (27.05.1997)

Класс C08J3/28 обработка волновой энергией или облучением частицами

способ улучшения водно-физических свойств почв -  патент 2527215 (27.08.2014)
способ получения наномодифицированного связующего -  патент 2522884 (20.07.2014)
пленки на основе сшитых полимеров и изготовленные из них изделия -  патент 2520209 (20.06.2014)
способ получения металл-полимерного композитного материала для радиотехнической аппаратуры -  патент 2506224 (10.02.2014)
композиция герметизирующего средства, отверждаемая высокоактивным излучением, и деталь с герметизирующим слоем -  патент 2505576 (27.01.2014)
способ получения нанодисперсного фторопласта -  патент 2501815 (20.12.2013)
способ приготовления наносуспензии для изготовления полимерного нанокомпозита -  патент 2500695 (10.12.2013)
слоистый материал, покрытый радиационно отверждаемой печатной краской или печатным лаком, и формованная деталь -  патент 2497859 (10.11.2013)
устойчивый к окислению высокосшитый сверхвысокомолекулярный полиэтилен -  патент 2495054 (10.10.2013)
способ получения порошка капсулированного полимерного материала (варианты) и устройство для его реализации (варианты) -  патент 2470956 (27.12.2012)
Наверх