способ получения оксида меди

Классы МПК:C01G3/02 оксиды; гидроксиды 
B01J23/72 медь
Автор(ы):, , , ,
Патентообладатель(и):Государственное образовательное учреждение высшего профессионального образования "Ивановский государственный химико-технологический университет" (RU)
Приоритеты:
подача заявки:
2011-05-10
публикация патента:

Изобретение относится к области неорганической химии и может быть использовано в технологии катализаторов и сорбентов. Порошок металлической меди обрабатывают паро-аммиачно-кислородной смесью при массовом соотношении Н2O:NH3 :O2=(5÷25):(5÷20):(55÷90). Полученную массу дополнительно прокаливают при температуре 200-400°С. Способ позволяет увеличить удельную поверхность и активность оксида меди, что позволяет использовать его для изготовления катализатора конверсии монооксида углерода в производстве аммиака. 1 табл., 3 пр.

Формула изобретения

Способ получения оксида меди из медьсодержащего сырья, включающий его обработку реагентом в измельчающем устройстве, отличающийся тем, что в качестве медьсодержащего сырья используют порошок металлической меди, обработку проводят паро-аммиачно-кислородной смесью при массовом соотношении Н2О:NH3 :O2=(5÷25):(5÷20):(55÷90), а полученную массу дополнительно прокаливают при температуре 200-400°С.

Описание изобретения к патенту

Изобретение относится к области неорганической химии и может быть использовано для приготовления катализаторов и сорбентов, в частности для производства низкотемпературного катализатора конверсии монооксида углерода в водород в производстве аммиака.

Уровень техники

Известен способ получения оксида меди, включающий взаимодействие пятиводного сульфата меди с гидроксидом натрия в присутствии воды при температуре 80-90°С с последующим отделением осадка меди (Карякин Ю.В. Чистые химические реактивы. Руководство по приготовлению неорганических препаратов. М-Л.: Гос.научн.-тех. изд. хим. лит-ры, 1947, с.339-340).

Недостатком данного способа являются низкая технологичность процесса, обусловленная большим расходом воды, необходимостью приготовления растворов реагентов, и проведение взаимодействия в жидкой фазе при повышенных температурах.

Известен способ получения оксида меди, включающий взаимодействие металлической меди в виде порошка, проволоки, фольги или пластинки с водным раствором аммиака в автоклаве при температуре 50-200°С и парциальном давлении кислорода не более 1,5 кг/см2 (заявка Японии № 63-11518, кл. C01G 3/02, 1986).

Недостатком данного способа является сложность проведения технологического процесса получения оксида меди, обусловленная использованием высоких температур и давлений.

Наиболее близким к предлагаемому изобретению по технической сущности и достигаемому результату, то есть прототипом, является способ получения оксида меди, включающий взаимодействие сульфата меди и гидроксида натрия при перемешивании реагентов с последующим отделением продукта, при этом используют твердые реагенты, а взаимодействие ведут в аппарате типа шаровой мельницы при общем коэффициенте загрузки 0,10÷0,35 и соотношением объема реагентов к объему мелющих тел 0,05÷0,20 (патент RU 2104944 С1, опубл. 20.02.1998 в БИ № 5). К недостаткам прототипа следует отнести низкую удельную поверхность и активность полученного катализатора, а также наличие требующих очистки промывных вод.

Сущность изобретения

Задачей изобретения является увеличение удельной поверхности и активности оксида меди.

Поставленная задача решена в предлагаемом способе получения оксида меди из медьсодержащего сырья, включающем его обработку реагентом в измельчающем устройстве, причем в качестве медьсодержащего сырья используют порошок металлической меди, а обработку проводят паро-аммиачно-кислородной смесью при массовом соотношении Н2О:NH3:O2 =(5÷25):(5÷20):(55÷90) и полученную массу дополнительно прокаливают при температуре 200-400°С.

Сведения, подтверждающие возможность осуществления изобретения

Пример 1.

В барабан вибрационной мельницы VM-4 загружают 60 г порошка металлической меди и активируют в течение 45 минут при пропускании через барабан мельницы газовой смеси, состоящей из пара, аммиака и воздуха при массовом соотношении Н2О:NH3:O2=15:10:75. Температура проведения процесса составляет 70°С. Далее полученную массу прокаливают при температуре 300°С в течение 4 часов.

Пример 2.

Оксид меди готовят аналогично примеру 1 с тем лишь отличием, что для получения продукта через барабан мельницы пропускают газовую смесь при массовом соотношении Н2О:NH3:O2=5:5:90, а прокаливание полученной массы ведут при температуре 400°С.

Пример 3.

Оксид меди готовят аналогично примеру 1, с тем лишь отличием, что для получения продукта через барабан мельницы пропускают газовую смесь при массовом соотношении Н 2О:NH3:O2=25:20:55, а прокаливание полученной массы ведут при температуре 200°С.

Удельную поверхность образцов определяли методом БЭТ по низкотемпературной адсорбции аргона (Киселев А.В. Физико-химическое применение газовой хроматографии / А.В. Киселев, А.В. Иогансен, К.И. Сакодынский и др. - М.: Химия, 1973. - 256 с.).

Каталитическую активность оксида меди определяли по реакции конверсии монооксида углерода водяным паром в водород на установке проточного типа при объемной скорости газовой смеси 5000 с-1, соотношении пар:газ = 1 и температуре 220°С.

Полученные данные приведены в таблице.

Таблица
Пример № Удельная поверхность, м2 Активность (степень превращения СО при t=220°C)
Пример 1 2681
Пример 2 2277
Пример 3 2479
Прототип 1446

Из таблицы видно, что использование заявленного изобретения увеличивает активность оксида меди по сравнению с прототипом на 67-76%, удельную поверхность на 57-86%.

Класс C01G3/02 оксиды; гидроксиды 

способ получения раствора ионного серебра -  патент 2471018 (27.12.2012)
способ получения нановискерных структур оксида меди -  патент 2464224 (20.10.2012)
способ получения оксида меди с повышенной удельной поверхностью -  патент 2455233 (10.07.2012)
способ получения наноразмерных частиц оксида меди -  патент 2442751 (20.02.2012)
способ стабилизации гидроксида меди -  патент 2388696 (10.05.2010)
cпособ получения кислородсодержащих молибдованадофосфорных гетерополикислот -  патент 2373153 (20.11.2009)
способ получения труднорастворимых гидроокислов металлов -  патент 2143997 (10.01.2000)
способ получения оксида меди -  патент 2121973 (20.11.1998)
способ получения оксида меди -  патент 2116968 (10.08.1998)
способ получения оксида меди -  патент 2116967 (10.08.1998)

Класс B01J23/72 медь

катализатор для окисления сернистых соединений -  патент 2529500 (27.09.2014)
способ получения фенилэтинил производных ароматических соединений -  патент 2524961 (10.08.2014)
способ применения слоистых сферических катализаторов с высоким коэффициентом доступности -  патент 2517187 (27.05.2014)
фотокатализатор на основе оксида титана и способ его получения -  патент 2508938 (10.03.2014)
способ селективного гидрирования фенилацетилена в присутствии стирола с использованием композитного слоя -  патент 2492160 (10.09.2013)
катализатор конверсии водяного газа низкой температуры -  патент 2491119 (27.08.2013)
системы и способы удаления примесей из сырьевой текучей среды -  патент 2490310 (20.08.2013)
катализатор и способ получения алифатических углеводородов из оксида углерода и водорода в его присутствии -  патент 2489207 (10.08.2013)
способ повышения времени стабильной работы катализатора в реакции гидроалкилирования бензола ацетоном с получением кумола и способ получения кумола гидроалкилированием бензола ацетоном -  патент 2484898 (20.06.2013)
способы удаления примесей из потоков сырья для полимеризации -  патент 2480442 (27.04.2013)
Наверх