сканирующий лазерный маяк космических аппаратов

Классы МПК:G01S1/70 с использованием электромагнитных волн иных, чем радиоволны 
B64G1/36 с использованием чувствительных элементов, например солнечных датчиков, датчиков горизонта
G05D1/00 Управление или регулирование величин, определяющих местоположение, курс, высоту или положение в пространстве наземных, водных, воздушных или космических транспортных средств, например с помощью автопилотов
Автор(ы):
Патентообладатель(и):Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" (RU)
Приоритеты:
подача заявки:
2011-02-22
публикация патента:

Изобретение относится к области оптических средств измерения параметров относительного сближения космических аппаратов. Сканирующий лазерный маяк содержит корпус и источник лазерного излучения, установленный в сканирующем блоке в карданном подвесе. В устройство введена оптическая анаморфотная система, установленная в сканирующем блоке на одной оптической оси с источником лазерного излучения. При этом ось карданного подвеса перпендикулярна упомянутой оптической оси, а оптическая анаморфотная система представляет собой в сечении, перпендикулярном направлению сканирования, широкоугольный объектив типа «рыбий глаз». Качающийся привод, находящийся в механической связи со сканирующим блоком, выполнен качающимся в плоскости сканирования. Технический результат заключается в обеспечении возможности обнаружения пассивного космического аппарата в половине телесного угла на дистанциях до 160 км при наведении на него активного космического аппарата. 3 ил. сканирующий лазерный маяк космических аппаратов, патент № 2462731

сканирующий лазерный маяк космических аппаратов, патент № 2462731 сканирующий лазерный маяк космических аппаратов, патент № 2462731 сканирующий лазерный маяк космических аппаратов, патент № 2462731

Формула изобретения

Сканирующий лазерный маяк космических аппаратов, содержащий корпус, источник лазерного излучения, установленный в сканирующем блоке в карданном подвесе, отличающийся тем, что в него введена оптическая анаморфотная система, установленная в сканирующем блоке на одной оптической оси с источником лазерного излучения; при этом ось карданного подвеса перпендикулярна упомянутой оптической оси, а оптическая анаморфотная система представляет собой в сечении, перпендикулярном направлению сканирования, широкоугольный объектив типа «рыбий глаз», причем качающийся привод, находящийся в механической связи со сканирующим блоком, выполнен качающимся в плоскости сканирования.

Описание изобретения к патенту

Изобретение относится к области оптических средств измерения параметров относительного сближения космических аппаратов (КА), а именно к сканирующим лазерным маякам.

Лазерные маяки не только обладают лучшей видимостью при наличии фона по сравнению с обычными световыми маяками, но и позволяют автоматизировать процесс управления движением при одновременном повышении точности ориентации и наведения без участия оператора.

Известны различные конструкции сканирующих лазерных маяков.

Для навигации транспортных средств при отсутствии ограничений в отношении угла входа в зону ориентации и наведения могут быть использованы лазерные маяки с круговой или веерной диаграммой сканирования лазерного луча [1; 2; 3; 4; 5; 6; 7].

Известна конструкция сканирующего лазерного маяка для задания курса и глиссады снижения летательных аппаратов, а также обеспечения пилоту визуального контакта с взлетно-посадочной полосой при посадке ночью и в условиях пониженной видимости [8; 9; 10; 11].

В качестве источников излучения в каждом маяке используются по два лазера. В глиссадных маяках применяются лазеры, генерирующие разное, контрастное для глаз оператора излучение. Центральный маяк снабжен только одинаковыми лазерами. Для обеспечения управления лучами лазеров в пространстве ориентирования имеются дефлекторы вертикального и горизонтального сканирования. Для регулировки мощности излучения лазеров маяк снабжен устройствами ослабления с набором нейтральных ослабителей.

Лазерные лучи всех трех маяков сканируют в вертикальной плоскости по синусоидальному закону с частотой 0,5 кГц в следующих углах: для центрального маяка 4,5°, для боковых маяков 2,5°. Одновременно осуществляется низкочастотное сканирование в горизонтальной плоскости. В глиссадных маяках лучи сканируют на угол, равный 15°. Угол сканирования центрального маяка в горизонтальной плоскости равен 7°. Обратный ход лазерных лучей гасится.

За прототип принята конструкция сканирующего лазерного маяка [7], основанная на циклическом создании последовательно во времени шестисекторного поля наведения в азимутальной плоскости. Сканирующий лазерный маяк включает в себя лазер, зеркало, двигатель, катушку, электромагнит, генератор, муфту, вращающийся диск и возвратную пружину.

Катушка, установленная в магнитном поле электромагнита, под воздействием напряжения, поступающего с генератора, совершает колебательное движение по пилообразной или синусоидальной траектории. Луч лазера осуществляет при этом сканирование пространства в вертикальной плоскости. Угловым размером сканирования можно управлять увеличивая или уменьшая амплитуду напряжения генератора. Вращающееся зеркало закреплено на муфте, подключенной к генератору, вырабатывающему последовательность широтно-модулированных импульсов (ШИМ-последовательность). При вращении диска двигателем в моменты времени поступления импульсов генератора на электромагнит муфты диск периодически притягивается, преодолевая возвратное усилие пружины. В результате этого в течение длительности импульса муфта поворачивает зеркало, а вместе с тем отклоняет и лазерный пучок на угол, пропорциональный времени сцепления электромагнитной муфты с вращающимся диском. По окончании импульса зеркало вместе с муфтой под воздействием пружины возвращается в исходное состояние. Этот цикл сканирования с переменным углом поворота лазерного луча периодически повторяется.

Принцип формирования шестисекторной круговой зоны ориентирования следующий. В момент подачи с генератора импульса наибольшей длительности лазерный луч из исходного нулевого положения совершает полный оборот в азимутальной (горизонтальной) плоскости. При уменьшении длительности импульсов в последовательности, формируемой генератором, сектор азимутального сканирования последовательно от цикла к циклу сужается до минимально выбранного значения. Полный цикл формирования шестисекторной зоны равен периоду следования пачек ШИМ-последовательностей. Наименьшая длительность импульса определяется минимальным размером сектора.

Описанное устройство осуществляет обратную последовательность сканирования, а также сканирование в вертикальной плоскости.

Недостатком аналогов и прототипа является малая величина телесного угла в пространстве, в котором возможно обнаружение маяка, а также недостаточная надежность ввиду сложности конструкций.

Задачей изобретения является повышение вероятности обнаружения пассивного КА и снижение требований по его предварительной ориентации относительно активного КА при их сближении за счет увеличения телесного угла, в котором возможно обнаружение лазерного маяка. Одновременно изобретение обладает большей надежностью в силу простоты конструкции.

Задача решается с использованием сканирующего лазерного маяка, содержащего корпус, источник лазерного излучения, установленный в сканирующем блоке в карданном подвесе, причем в него введена оптическая анаморфотная система, установленная в сканирующем блоке на одной оптической оси с источником лазерного излучения; при этом ось карданного подвеса перпендикулярна упомянутой оптической оси, а оптическая анаморфотная система представляет собой в сечении, перпендикулярном направлению сканирования, широкоугольный объектив типа «рыбий глаз», причем качающийся привод, находящийся в механической связи со сканирующим блоком, выполнен качающимся в плоскости сканирования.

На Фиг.1 изображена конструкция предложенного изобретения, где:

1 - корпус;

2 - источник лазерного излучения;

3 - сканирующий блок;

4 - оптическая анаморфотная система;

5 - карданный подвес;

6 - качающийся привод.

Лазерный сканирующий маяк состоит из источника лазерного излучения 2 и оптической анаморфотной системы 4, помещенных в сканирующий блок 3, закрепленный в карданном подвесе 5, качающегося привода 6 и корпуса 1.

Источник лазерного излучения 2 служит для получения оптического излучения с необходимыми параметрами, оптическая анаморфотная система 4 формирует требуемую диаграмму направленности, качающийся привод 6 обеспечивает движение сканирующего блока 3 в плоскости сканирования. Ось карданного подвеса 5 перпендикулярна оптической оси.

В процессе работы маяка сканирующий блок 3 поворачивается на угол 180°, после чего сканирование продолжается в противоположном направлении.

Оптическая анаморфотная система 4 обеспечивает расходимость излучения в плоскости, перпендикулярной направлению сканирования 180°, а в плоскости, совпадающей с направлением сканирования, расходимость до 1° (см. Фиг.2).

Особенностью анаморфотной системы является то, что в меридиональной и сагиттальной плоскостях ее фокусные расстояния имеют различные значения. Принципиально в анаморфотной системе могут быть применены преломляющие поверхности самых разнообразных форм, чаще всего используются цилиндрические линзы.

В плоскости, перпендикулярной направлению сканирования, объектив представляет собой так называемый «рыбий глаз» - оптическую систему с полем зрения 180°, например, типа объективов «Зодиак» и «МС Зенитар-Н 2,8/16».

В конструкции может быть использован один или несколько твердотельных лазеров с диодной накачкой, волоконных лазеров, полупроводниковых лазеров.

Качающийся привод 6 может состоять из электродвигателя и трансмиссии, включающей в себя кулачковый и кривошипно-ползунный механизмы.

Достигаемый технический результат - повышение вероятности обнаружения пассивного КА и снижение требований по его предварительной ориентации относительно активного КА при их сближении за счет увеличения телесного угла, в котором возможно обнаружение лазерного маяка.

Возможно обеспечить обнаружение пассивного КА в полном телесном угле, т.е. при подходе активного КА с любого направления. Это достигается путем установки на пассивный КА с противоположных сторон двух сканирующих лазерных маяков (см. Фиг.3), каждый из которых полностью покрывает телесный угол 2сканирующий лазерный маяк космических аппаратов, патент № 2462731 .

Также возможно вычисление дистанции между активным и пассивным КА посредством измерения мощности сигнала маяка пассивного КА.

При конструировании лазерных маяков возникает следующая трудность. С увеличением телесного угла, в котором излучает маяк, снижается расходимость его излучения и, соответственно, с увеличением расстояния между пассивным и активным КА падает плотность мощности на приемнике излучения, что снижает вероятность обнаружения пассивного КА.

Таким образом, дальность действия лазерного маяка и величина угла, в котором осуществляется его обнаружение, представляют собой некое среднее значение, минимально удовлетворяющее условиям задачи.

Обнаружение объекта осуществляется на дальнем участке сближения. Для используемых в настоящее время для измерений бортовых радиотехнических систем дальность обнаружения составляет свыше 100 км.

Для обоснования возможности практической реализации проведем расчет максимальной дальности обнаружения излучения маяка. Исходные данные: маяк излучает в непрерывном режиме, сканирование осуществляется диаграммой 1°×180° (0,110 ср), мощность излучения составляет 2 Вт.

Максимальная дальность обнаружения лазерного маяка на фоне космоса оценивается по формуле:

сканирующий лазерный маяк космических аппаратов, патент № 2462731

где Рм - мощность излучения лазерного маяка; Sn - площадь апертуры приемной оптики; сканирующий лазерный маяк космических аппаратов, патент № 2462731 - коэффициент пропускания оптического тракта; Pn - минимальная принимаемая мощность отраженного сигнала; сканирующий лазерный маяк космических аппаратов, патент № 2462731 м - телесный угол диаграммы излучения маяка.

Для оценки дальности обнаружения сделаны следующие допущения: площадь приемной апертуры принята Sn=2,83·10 -3 м2 (диаметр 6 см); пороговая мощность принимаемого сигнала составляет Pn=10-12 Вт; пропускание оптики равно сканирующий лазерный маяк космических аппаратов, патент № 2462731 =0,5.

Максимальная дальность обнаружения на фоне космического пространства составит:

L max=160397 м.

Для сравнения можно взять характеристики известных конструкций лазерных маяков.

Один из первых бортовых оптико-электронных комплексов для измерения параметров сближения КА был создан в 1967 г. в Центре космических полетов им. Маршалла (США) [12, 13, 14]. Состав аппаратуры предусматривал установку на пассивном КА лазерного маяка для более надежной и быстрой взаимной ориентации взаимодействующих КА. Маяк имел коническую диаграмму направленности излучения, равную 10°. Средняя мощность излучения составляла 200 мВт. Ввиду того, что поле зрения приемной оптической системы на активном КА было также равно 10°, то перед началом сближения взаимодействующие КА должны были быть ориентированы в направлении друг друга с точностью не меньшей ±10°. Максимальная дальность обнаружения пассивного КА составляла 120000 м в пределах конуса 0,024 ср (10°×10°).

В настоящее время на борту Международной космической станции (МКС) установлена подсистема лазерных реперных устройств (РУ). РУ задают координатную систему стыковочного узла посредством их размещения на корпусе МКС в определенных реперных точках, посредством формирования трех излучающих апертур с конической диаграммой направленности, равной 30° (по уровню излучения 0,5). Подсистема обеспечивает определение всех параметров взаимного положения и относительного движения пассивного КА на дистанции до 200 м. На дистанции менее 10 м предельный угол, под которым может наблюдаться светоизлучающая апертура РУ, составляет 49°. Максимальная дальность обнаружения пассивного КА составляет 7500 м в пределах конуса 0,214 ср (30°×30°).

Литература

1. Заявка 3313161 (ФРГ). МКИ Н04К 3/00.

2. Пат. 59-16222 (Япония). МКИ G01S 1/70.

3. Пат. 446751 (Австралия). МКИ H01S 1/00.

4. Пат. 1346852 (Великобритания). МКИ F21Q 3/02.

5. Пат. 371283 (Швеция). МКИ F21Q 3/02.

6. Пат. 132211 (Норвегия). МКИ G08G 3/00.

7. Пат. 2530034 (Франция). МКИ G01S 1/70.

8. Пат. DE 3222473 (ФРГ). Световые лазерные маяки.

9. А.с. 714927 (СССР). Сканирующий световой маяк / Ф.А.Ахмадулин, Г.А.Калошин, В.Я.Фадеев.

10. А.с. 714928 (СССР). Устройство для световой сигнализации при ориентировании движущихся объектов.

11. А.с. 736772 (СССР). Оптико-механическое сканирующее устройство / Г.А.Калошин, А.Ф.Кутелев, В.Я.Фадеев.

12. Navigation, 1966, vol.3, No.3.

13. Aviation Week, 1964, vol.80, No.20.

14. Lehr C.G. Laser Tracking Systems. - in: Laser Applications, Academic Press., 1974, vol.2, p.13.

Класс G01S1/70 с использованием электромагнитных волн иных, чем радиоволны 

комбинированный оптико-электронный прибор -  патент 2497062 (27.10.2013)
устройство контроля ориентации пассивных космических аппаратов -  патент 2486112 (27.06.2013)
способ формирования информационного поля лазерной системы телеориентации -  патент 2477866 (20.03.2013)
сканирующий лазерный маяк космических аппаратов -  патент 2462732 (27.09.2012)
способ формирования информационного поля лазерной системы телеориентации -  патент 2383896 (10.03.2010)
лазерная система телеориентации -  патент 2267734 (10.01.2006)
способ телеориентации -  патент 2117311 (10.08.1998)
лазерная система телеориентации с повышенной помехоустойчивостью -  патент 2110808 (10.05.1998)
способ формирования информационного поля лазерной системы телеориентации и устройство для его осуществления -  патент 2099730 (20.12.1997)
способ уменьшения угловой расходимости лазерного излучения и устройство для его осуществления (варианты) -  патент 2093877 (20.10.1997)

Класс B64G1/36 с использованием чувствительных элементов, например солнечных датчиков, датчиков горизонта

способ измерения вектора угловой скорости космического аппарата и устройство для его реализации -  патент 2519603 (20.06.2014)
оптический солнечный датчик -  патент 2517979 (10.06.2014)
способ автоматической компенсации ошибок бесплатформенной системы ориентации в системе управления ориентацией космических аппаратов, и устройство, реализующее этот способ -  патент 2517018 (27.05.2014)
способ построения орбитальной ориентации пилотируемого космического аппарата -  патент 2467929 (27.11.2012)
сканирующий лазерный маяк космических аппаратов -  патент 2462732 (27.09.2012)
способ ориентации в пространстве осей связанной системы координат космического аппарата -  патент 2428361 (10.09.2011)
способ ориентации осей космического аппарата в солнечно-орбитальную систему координат -  патент 2414392 (20.03.2011)
способ оптимизации динамических условий функционирования гравитационно-чувствительных установок в условиях остаточных микроускорений на борту орбитальных космических аппаратов и устройство для его реализации -  патент 2369535 (10.10.2009)
способ управления ориентацией космического аппарата, снабженного бортовым радиотехническим комплексом -  патент 2355013 (10.05.2009)
способ управления ориентацией геостационарного космического аппарата, оснащенного радиомаяком -  патент 2354590 (10.05.2009)

Класс G05D1/00 Управление или регулирование величин, определяющих местоположение, курс, высоту или положение в пространстве наземных, водных, воздушных или космических транспортных средств, например с помощью автопилотов

датчик препятствия /варианты/ -  патент 2527196 (27.08.2014)
устройство и способ автоматического управления движением судна по расписанию -  патент 2525606 (20.08.2014)
способ помощи в навигации для определения траектории летательного аппарата -  патент 2523183 (20.07.2014)
адаптивная система для регулирования и стабилизации физических величин -  патент 2522899 (20.07.2014)
маневр боевого самолета канцера -  патент 2521189 (27.06.2014)
комплексная система управления траекторией летательного аппарата при заходе на посадку -  патент 2520872 (27.06.2014)
комплекс бортового оборудования вертолета -  патент 2520174 (20.06.2014)
автоматическая инструментальная система передачи метеорологических характеристик аэродрома и ввода их в пилотажно-навигационный комплекс управления полетом самолета -  патент 2519622 (20.06.2014)
среднемагистральный пассажирский самолет с системой управления общесамолетным оборудованием -  патент 2519465 (10.06.2014)
способ контроля непотопляемости судна -  патент 2518374 (10.06.2014)
Наверх