нагреватель

Классы МПК:F24J3/00 Прочие способы получения или использования тепла, образующегося иначе, чем в процессе горения
B82B1/00 Наноструктуры
Автор(ы):, ,
Патентообладатель(и):Гринавцев Валерий Никитич (RU),
Гринавцев Олег Валерьевич (RU),
Черногиль Виталий Богданович (RU)
Приоритеты:
подача заявки:
2010-11-03
публикация патента:

Изобретение относится к энергетике и может использоваться для нагрева жидкостей. Задачей изобретения является создание устройства, способного интенсивно разогревать теплоноситель вращающимся магнитным полем. Для решения поставленной задачи предложен нагреватель, состоящий из корпуса, расположенного в нем ротора с винтовыми нагнетающими канавками и обратными канавками, направление которых противоположно нагнетающим и выполненные на роторе, причем корпус на внутренней поверхности снабжен трехфазной обмоткой, и имеет провода для подвода электрического тока к трехфазной обмотке, при этом ротор неподвижно соединен уплотнением с корпусом и изготовлен из немагнитного материала: меди, бронзы, латуни, алюминия или силумина, имеет центральное отверстие для вентиляции воздуха, а полость между внутренней поверхностью корпуса и наружной поверхностью ротора заполнена трансформаторным маслом, в которое введены наночастицы карбонильного железа размером от 10 до 15 нанометров в количестве 3÷16 объемных процентов от объема трансформаторного масла, покрытые поверхностно-активным веществом и олеиновой кислотой. 1 з.п. ф-лы, 2 ил.

нагреватель, патент № 2459158 нагреватель, патент № 2459158

Формула изобретения

1. Нагреватель, состоящий из корпуса, расположенного в нем ротора с винтовыми нагнетающими канавками и обратными канавками, направление которых противоположно нагнетающим, и выполненными на роторе, причем корпус на внутренней поверхности снабжен трехфазной обмоткой и имеет провода для подвода электрического тока к трехфазной обмотке, отличающийся тем, что ротор неподвижно соединен уплотнением с корпусом и изготовлен из немагнитного материала: меди, бронзы, латуни, алюминия или силумина, имеет центральное отверстие для вентиляции воздуха, а полость между внутренней поверхностью корпуса и наружной поверхностью ротора заполнена трансформаторным маслом, в которое введены наночастицы карбонильного железа размером от 10 до 15 нм в количестве 3÷16 об.% от объема трансформаторного масла, покрытые поверхностно-активным веществом и олеиновой кислотой.

2. Нагреватель по п.1, отличающийся тем, что наночастицы карбонального железа имеют размер от 10 до 15 нм, а их количество составляет от 3 до 16 об.% от объема трансформаторного масла.

Описание изобретения к патенту

Устройство относится к винтоканавочным насосам, используемым как нагреватели жидкостей в замкнутом контуре, и может использоваться в нефтехимических, санитарно-технических, бытовых условиях и других структурах.

Известен «Лабиринтно-винтовой насос» (см. книгу «Лабиринтно-винтовые насосы и уплотнения для агрессивных сред», авт. Голубев А.С. - М.: Машиностроение, 1981, стр.4, рис.2). Насос состоит из корпуса с подшипниками, ротора с нагнетающими и обратными канавками, подводящего и отводящего патрубка. Недостаток заключается в низкой интенсивности нагрева жидкости.

Известен также «Винтоканавочный насос», SU 1371141, F16N 39/04, авт. А.М.Стецюк и другие. Он состоит из корпуса, ротора с винтовыми противоположно направленными канавками и рабочими поверхностями. Ротор опирается на подшипники и вращается от двигателя через муфту.

Недостаток «Винтоканавочного насоса» в том, что для привода вращения ротора необходим электродвигатель, муфта, что увеличивает материалоемкость конструкции.

В механике известны для разогрева жидкости винтоканавочные насосы (прототип), содержащие корпус, расположенный в нем ротор с винтовыми нагнетающими канавками и обратные канавки, направление которых противоположно нагнетающим и выполненные на роторе, причем корпус на внутренней поверхности снабжен трехфазной обмоткой и имеет провода электрического тока к трехфазной электрообмотке (см. заявка № 2007141822/06(045799)) от 12.11.2007, кл. F04D 3/02, автор Гринавцев и др.).

Недостаток описанной конструкции заключается в том, что ротор и подшипниковые узлы увеличивают материалоемкость конструкции.

Техническая задача настоящего изобретения заключается в создании устройства, способного интенсивно разогревать теплоноситель без вращения ротора.

Техническая задача достигается тем, что в нагревателе, состоящем из корпуса, расположенного в нем ротора с выполненными на его поверхности винтовыми нагнетающими и обратными канавками, направление которых противоположно нагнетающим, снабженного на внутренней поверхности корпуса трехфазной обмоткой с проводами для подвода электрического тока к трехфазной обмотке, ротор неподвижно соединен уплотнением с корпусом и изготовлен из немагнитного материала: меди, бронзы, латуни, алюминия или силумина, имеет центральное отверстие для вентиляции воздуха, а полость между внутренней поверхностью корпуса и наружной поверхностью ротора заполнена трансформаторным маслом, в которое введены наночастицы карбонильного железа размером от 10 до 15 нанометров в количестве 3-16 объемных процентов от объема трансформаторного масла и покрытых поверхностно-активным веществом и олеиновой кислотой.

При этом наночастицы карбонального железа имеют размер от 10 до 15 нанометров, а их количество составляет от 3 до 16 объемных процентов от объема трансформаторного масла.

Предлагаемый нагреватель использует проявление эффекта внутреннего трения жидкости по прямому назначению - получению тепла.

Сущность изобретения поясняется рисунком, на котором:

Фиг.1 - схематическое изображение разогревателя.

Фиг.2 - схема поперечного разреза разогревателя.

Нагреватель состоит из корпуса 1 (фиг.1.) из низкоуглеродистой стали, на внутренней поверхности 2 корпуса 1 имеются пазы 3 (фиг.2), в которых размещена трехфазная обмотка 4, ротор 5, изготовленный из немагнитного материала: меди, бронзы, латуни, алюминия или силумина, имеет нагнетающие канавки 6 и обратные 7 канавки и уплотнения 8, которыми ротор 5 неподвижно соединен с корпусом 1, а полость, образованная внутренней поверхностью 2 корпуса 1 и наружной поверхностью 9 ротора 5, заполнена трансформаторным маслом, в которое введены наночастицы карбонального железа 11 размером от 10 до 15 нанометров в количестве 3÷16 объемных процентов от объема трансформаторного масла и покрытых поверхностно-активным веществом и олеиновой кислотой 12. Корпус 1 имеет провода 13 и изоляторы 14 для подвода напряжения электрического тока к трехфазной обмотке 4, в результате чего создается вращающееся магнитное поле 15 по принципу асинхронного двигателя (см. Касаткин А.С. - М.: Энергия, 1973, стр.385-386). Ротор 1 имеет отверстие 16 для вентиляции воздуха, через которое тепло отдается окружающей среде, а корпус 1 наружную поверхность 17.

Нагреватель работает следующим образом.

При подводе по проводам 13 (фиг.1.) напряжения к трехфазной обмотке 4, размещенной в пазах 3, возникает вращающееся магнитное поле 15, которое воздействует на трансформаторное масло 10, в которое введены наночастицы карбонального железа 11 размером от 10 до 15 нанометров в количестве 3÷16 объемных процентов трансформаторного масла и покрытых поверхностно-активным веществом и олеиновой кислотой 12. Под действием электромагнитного поля наночастицы карбонального железа 11, которые равномерно распределены в трансформаторном масле и надежно предохранены от слипания поверхностно-активным веществом и олеиновой кислотой 12, создают поток, который движется со скоростью магнитного поля 15, увлекают за собой молекулы трансформаторного масла 10 по нагнетающим канавкам 6, а обратные канавки 7 создают противоток. В результате столкновения двух потоков создается высокая турбулентность, характеризующаяся высоким внутренним трением, за счет которого трансформаторное масло 10 интенсивно разогревается и нагревает корпус 1, ротор 5, которые, в свою очередь, через наружную поверхность 16 и через отверстие 17 в роторе 5 отдают тепло окружающей среде. Интенсивность тепловыделения в трансформаторном масле 10 зависит от профиля нагнетающих канавок 6 и обратных канавок 7 и вязкости трансформаторного масла 10, что позволяет получать заданный температурный режим нагрева. Турбулентный поток, по условиям гидродинамики, не может нагреть жидкость выше температуры кипения, а она значительно ниже температуры воспламенения. Кроме того, нагреватель не имеет высокотемпературных (до 900°C) термоэлектрических нагревателей, что полностью исключает самопроизвольное возгорание нагревателя и обеспечивает полную пассивную пожарную безопасность устройства.

Класс F24J3/00 Прочие способы получения или использования тепла, образующегося иначе, чем в процессе горения

петротермальная электростанция и устройство монтажа теплоотборной системы петротермальной электростанции -  патент 2529769 (27.09.2014)
способ комплексного использования геотермального тепла с помощью пароэжекторного теплового насоса -  патент 2528213 (10.09.2014)
многофункциональный вихревой теплогенератор (варианты) -  патент 2527545 (10.09.2014)
аэростатический летательный аппарат -  патент 2526123 (20.08.2014)
теплогенератор фрикционный -  патент 2522738 (20.07.2014)
ветровой теплогенератор -  патент 2522736 (20.07.2014)
ветровой фрикционный теплогенератор -  патент 2522734 (20.07.2014)
устройство для нагрева жидкости -  патент 2517986 (10.06.2014)
способ управления комбинированным устройством и комбинированное устройство, реализующее данный способ -  патент 2516091 (20.05.2014)
способ управления процессом повышения стабильности работы кавитатора -  патент 2515573 (10.05.2014)

Класс B82B1/00 Наноструктуры

многослойный нетканый материал с полиамидными нановолокнами -  патент 2529829 (27.09.2014)
материал заменителя костной ткани -  патент 2529802 (27.09.2014)
нанокомпозитный материал с сегнетоэлектрическими характеристиками -  патент 2529682 (27.09.2014)
катализатор циклизации нормальных углеводородов и способ его получения (варианты) -  патент 2529680 (27.09.2014)
способ определения направления перемещения движущихся объектов от взаимодействия поверхностно-активного вещества со слоем жидкости над дисперсным материалом -  патент 2529657 (27.09.2014)
способ формирования наноразмерных структур -  патент 2529458 (27.09.2014)
способ бесконтактного определения усиления локального электростатического поля и работы выхода в нано или микроструктурных эмиттерах -  патент 2529452 (27.09.2014)
способ изготовления стекловидной композиции -  патент 2529443 (27.09.2014)
комбинированный регенеративный теплообменник -  патент 2529285 (27.09.2014)
способ изготовления тонкопленочного органического покрытия -  патент 2529216 (27.09.2014)
Наверх