способ имплантации конструкционной стали ионами меди и свинца

Классы МПК:C23C14/48 ионное внедрение
C23C14/16 на металлическую подложку или на подложку из бора или кремния
Автор(ы):, , ,
Патентообладатель(и):Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный индустриальный университет"(ФГБОУ ВПО "МГИУ") (RU)
Приоритеты:
подача заявки:
2011-02-11
публикация патента:

Изобретение относится к области машиностроения, а именно к способам ионной обработки поверхности деталей из конструкционных сталей, в частности, типа 30ХГСН2А. Технический результат - повышение усталостной прочности стали и снижение коэффициента трения детали при скольжении. Согласно способу осуществляют совместную имплантацию ионов меди и свинца в поверхность стали с помощью катода, который изготавливают из бинарного сплава меди и свинца. При этом содержание свинца в катоде составляет 25-45%. Дозу (флюенс) имплантации выбирают в пределах диапазона (1-2,5)·1017 ион/см 2, причем с увеличением содержания свинца флюенс снижают в пределах этого диапазона. 1 табл.

Формула изобретения

Способ имплантации конструкционной углеродистой стали, при котором в поверхность стали имплантируют ионы меди и свинца, отличающийся тем, что осуществляют совместную имплантации ионов меди и свинца, катод изготавливают из бинарного сплава меди и свинца, содержание свинца в котором составляет 25-45%, дозу (флюенс) имплантации выбирают в пределах диапазона (1-2,5)·10 17 ион/см2, причем с увеличением содержания свинца флюенс снижают в пределах указанного рабочего диапазона.

Описание изобретения к патенту

Предлагаемое изобретение относится к области ионно-лучевой вакуумной обработки материалов и может быть использовано в машиностроении для повышения эксплуатационных свойств деталей машин и механизмов.

Известен способ (заявка Франции 2476143, кл. С23С 14/48) ионно-лучевой обработки изделий, заключающийся в том, что в камеру, где располагаются изделия, напускают газ. Газ ионизируют и используют для обработки изделий. Ионы газа ускоряются за счет приложения переменной разности потенциала между изделиями и камерой. Технические возможности данного способа по созданию необходимой структуры и элементного состава в приповерхностном слое изделий ограничены тем, что при такой обработке в изделие имплантируют только ионы напускаемого газа. Создаваемые приповерхностные слои имеют сильные ограничения по значениям микротвердости из-за больших возникающих градиентов свойств между упрочненными слоями и матрицей. Следствием является возникновение высоких внутренних напряжений в приповерхностных слоях, приводящее к разрушению материала даже при слабых нагрузках.

Известен способ ионно-лучевой обработки изделий и материалов (Sharkeev Yu.P., Gritsenko B.P., Perry A.J., Fortuna S.V., Modification of mettallic materials and hard coatings using vacuum arc metal ion implantation. Vacuum, 1999, 1, v.52, p.247-254), по которому можно с помощью ионных пучков повышать износостойкость изделий. Одним из основных недостатков данного способа является ограничение по достигаемой микротвердости в приповерхностных слоях. Начиная с некоторых значений микротвердости, которые для каждого материала свои, напряжения, возникающие в приповерхностных слоях, столь велики, что прочности материала не хватает, и он разрушается либо самопроизвольно, либо при нагружении.

Наиболее близким по технической сущности к заявляемому способу ионной имплантации является способ, при котором поверхность обрабатываемой детали подвергается воздействию пучка ионов меди с дозой (1-5)·1017 ион/см2 (Овчинников В.В., Козлов Д.А., Якутина С.В. Исследование свойств поверхности стали 30ХГСН2А после имплантации ионами меди. / Машиностроение и инженерное образование. 2009. № 2. С.7-13).

Недостатком прототипа является ограниченное увеличение усталостной прочности и износостойкости обработанной поверхности деталей. Увеличение дозы имплантирования ионов меди приводит к росту длительности обработки при постоянстве значения усталости обработанной стали и появлению задиров на имплантированной поверхности.

Предлагаемый способ ионной имплантации конструкционной стали ионами меди и свинца обеспечивает повышение усталостной прочности при низких значениях коэффициента трения скольжения.

Технический результат, на достижение которого направлен заявляемый способ, обеспечивается одновременной имплантацией ионов меди и свинца, осуществляют совместную имплантации ионов меди и свинца, катод изготавливают из бинарного сплава меди и свинца, содержание свинца в котором составляет 25-45%, дозу (флюенс) имплантации выбирают в пределах (1-2,5)×1017 ион/см2, причем с увеличением содержания свинца флюенс снижают пределах рабочего диапазона.

Выполнение совместной имплантации ионами с большой массой (свинец) в сочетании с ионами (медь), близкими по массе к основе мишени (железо), позволяет создавать большое количество радиационных дефектов, по которым ионы меди проникают вглубь мишени. С помощью метода вторичной масс-спектрометрии установлено, что при одновременной имплантации ионов меди и свинца при дозе 1,5·1017 ион/см2 глубина проникновения ионов меди в обрабатываемую сталь в 4 раза превышает глубину проникновения ионов меди при облучении ими стали при одинаковой дозе.

На глубину проникновения ионов и свойства имплантированного слоя оказывает влияние материал, из которого выполнен катод установки для имплантирования. Содержание свинца в материале катода выбирают в пределах 25-45%. При содержании свинца менее 25% наблюдается снижение глубины проникновения ионов меди в мишень, усталостной прочности облученных образцов. Увеличение содержания свинца в материале катода более 45% сопровождается увеличением усталостной прочности облученных образцов, которое сопровождается резким ростом значений коэффициента трения.

Значение дозы, при которой достигается оптимальное сочетание высокой усталостной прочности и низкого коэффициента трения при одновременной имплантации ионов меди и свинца в сталь, уменьшается с 2,5×1017 ион/см2 при содержании свинца 25% до 1×1017 ион/см2 при содержании свинца 45%.

Предлагаемый способ осуществляют следующим образом. Вакуумную камеру, в которой расположен источник ионов, откачивают до давления 10-3 Па. Производят ионную очистку изделия с помощью ионного источника. При этом энергия ионов не превышает 10способ имплантации конструкционной стали ионами меди и свинца, патент № 2458182 15 кэВ. Затем повышают энергию ионов до 40 кэВ, одновременно имплантируют ионы меди и свинца с дозой (1-2,5)×1017 ион/см2, осуществляя формирование поверхностного слоя.

Образцы стали 30ХГСН2А в исходном состоянии и после имплантирования были подвергнуты испытаниям на усталость. Кроме того, на образцах в виде втулок диаметром 12 мм по величине момента страгивания определяли коэффициент трения скольжения. Полученные результаты представлены в таблице.

№ п/пСостав материала катода Доза имплантации (флюенс), ион/см2 Усталость, кцикл. при способ имплантации конструкционной стали ионами меди и свинца, патент № 2458182 =300 МПа при частоте 22,5 Гц Коэффициент трения
1 Контрольный образец без имплантации 87,20,14
2 100% Cu1,5·10 1792,4 0,10
377% Cu+23% Pb 1,5·1017 117,8 0,11
4 75% Cu+25% Pb 1,5·1017 145,20,11
5 64% Cu+36% Pb1,5·10 17148,5 0,12
655% Cu+45% Pb 1,5·1017 149,4 0,12
7 50% Cu+50% Pb 1,5·1017 149,70,17
8 64% Cu+36% Pb0,8·10 17129,2 0,11
964% Cu+36% Pb 1·1017 138,7 0,11
10 64% Cu+36% Pb 1,5·1017 148,50,12
11 64% Cu+36% Pb2·10 17149,2 0,12
1264% Cu+36% Pb 2,5·1017 149,9 0,12
13 64% Cu+36% Pb 3·1017 148,30,15
14 75% Cu+25% Pb2,5·10 17149,2 0,11
1564% Cu+36% Pb 1,5·101 способ имплантации конструкционной стали ионами меди и свинца, патент № 2458182 7 149,40,11
16 55% Cu+45% Pb1·10 17149,4 0,11

Класс C23C14/48 ионное внедрение

способ ионной имплантации поверхностей деталей из конструкционной стали -  патент 2529337 (27.09.2014)
способ импульсно-периодической ионной очистки поверхности изделий из диэлектрического материала или проводящего материала с диэлектрическими включениями -  патент 2526654 (27.08.2014)
конвертер вакуумного ультрафиолетового излучения в излучение видимого диапазона в виде аморфной пленки оксида кремния siox на кремниевой подложке -  патент 2526344 (20.08.2014)
устройство для химико-термической обработки деталей в несамостоятельном тлеющем разряде -  патент 2518047 (10.06.2014)
способ изготовления газодинамического подшипника поплавкового гироскопа -  патент 2517650 (27.05.2014)
способ имплантации ионами газов металлов и сплавов -  патент 2509174 (10.03.2014)
способ получения люминофора в виде аморфной пленки диоксида кремния с ионами селена на кремниевой подложке -  патент 2504600 (20.01.2014)
катод установки для ионной имплантации -  патент 2501886 (20.12.2013)
способ нанесения на металлическую деталь комплексного покрытия для защиты детали от водородной коррозии, состоящего из множества микрослоев -  патент 2495154 (10.10.2013)
способ многослойного нанесения покрытий на подложку -  патент 2492276 (10.09.2013)

Класс C23C14/16 на металлическую подложку или на подложку из бора или кремния

способ защиты поверхности алюминия от коррозии -  патент 2522874 (20.07.2014)
способ осаждения наноразмерной пленки альфа-al2o3 (0001) на металлические подложки -  патент 2516366 (20.05.2014)
негаммафазный кубический alcro -  патент 2507303 (20.02.2014)
способ получения металлсодержащего углеродного наноматериала -  патент 2499850 (27.11.2013)
способ антикоррозионной обработки детали путем осаждения слоя циркония и/или циркониевого сплава -  патент 2489512 (10.08.2013)
слой барьера, препятствующего прониканию водорода -  патент 2488645 (27.07.2013)
способ "гибридного" получения износостойкого покрытия на режущем инструменте -  патент 2485210 (20.06.2013)
способ алюминирования из паровой фазы металлической детали газотурбинного двигателя, донорская рубашка и лопатка газотурбинного двигателя, содержащая такую рубашку -  патент 2485206 (20.06.2013)
способ формирования теплозащитного покрытия на деталях газовых турбин из никелевых и кобальтовых сплавов -  патент 2479666 (20.04.2013)
способ нанесения комбинированных pvd/cvd/pvd покрытий на режущий твердосплавный инструмент -  патент 2468124 (27.11.2012)
Наверх