шихта для керамического материала на основе оксидов циркония и алюминия и нитрида циркония

Классы МПК:C04B35/486 тонкая керамика
C04B35/58 на основе боридов, нитридов или силицидов
Автор(ы):, , ,
Патентообладатель(и):Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный технологический институт (технический университет)" (RU)
Приоритеты:
подача заявки:
2010-07-29
публикация патента:

Изобретение относится к керамическому материаловедению, в частности к получению керамического материала на основе тугоплавких бескислородных и оксидных соединений, характеризующегося высокой прочностью и трещиностойкостью, и может быть использовано для изготовления режущего инструмента, в нефте- и газодобывающей промышленности (клапанные устройства и уплотнительные кольца насосов), при изготовлении сопловых насадок для пескоструйных аппаратов и распылителей химических растворов. Керамический материал получают из шихты, содержащей компоненты при следующем соотношении, мас.%: Аl2О3 10-40, ZrN 20-65, ZrO 2 остальное, при температуре спекания 1700-1800°С и давлении азота при спекании 0,10-0,12 МПа без сложной операции изостатического прессования с применением высоких значений давления. Технический результат изобретения заключается в получении керамического материала с высокой трещиностойкостью (коэффициентом интенсивности критических напряжений 7-14 МПа·м1/2 с) и прочностью при изгибе 650-750 МПа. 1 табл., 4 пр.

Формула изобретения

Шихта для керамического материала с высокой трещиностойкостью, содержащая ZrO2 и ZrN, отличающаяся тем, что она дополнительно содержит Аl2O3 при следующем соотношении компонентов, мас.%:

Аl2O3 10-40
ZrN 20-65
ZrO2остальное

Описание изобретения к патенту

Изобретение относится к керамическому материаловедению, в частности к получению керамического материала на основе тугоплавких бескислородных и оксидных соединений для высокотемпературного применения, характеризующегося высокой прочностью, твердостью и трещиностойкостью, и может быть использовано также для изготовления режущего инструмента, в нефте- и газодобывающей промышленности (клапанные устройства и уплотнительные кольца насосов), при изготовлении сопловых насадок для пескоструйных аппаратов и распылителей химических растворов.

Известен ряд решений по технологии и составам керамических материалов на основе оксида алюминия или оксида циркония.

В патенте США № 4316964 (опубл. 23.02.82) предлагается керамический материал на основе Аl2О3, ZrO2 и добавкой до 2 мас.% таких оксидов, как Y2О3, СеО 2, Lа2О3, Еr2О3 . Указанный материал обладает хрупкостью и недостаточно высокой прочностью.

В патенте России № 2336245, МПК С04В 35/488, С04В 35/58, (опубл. 20.10.2008, Бюл. № 29), патентообладатель - ОАО «КОМПОЗИТ» предлагается керамический материал, содержащий ZrB2 и ZrO2 , отличающийся тем, что он дополнительно содержит ZrN, Y 2О3 и(или) TiN. Недостатком материала является низкая механическая прочность при изгибе (400-480 МПа) и трещиностойкость (5,8-6,1 МПа·м1/2), что ограничивает области применения материала.

Наиболее близким по технической сущности к заявляемому изобретению является керамический материал, предложенный в патенте США № 5916833, МПК С04В 35/56, С04В 35/58, С04В 35/101, опубл. 29.06.1999, патентообладатель - NGK SPARK PLUG Co Ltd (Япония). В указанном патенте предлагается керамический материал, содержащий в том числе оксиды циркония и алюминия в объемном соотношении 80:20 (оксид циркония содержит добавку 3 мол. % оксида иттрия для стабилизации кубической фазы ZrO2), дополнительно в шихту вводится 25-60 об.% ZrN. Способ получения включает совместное смешивание в барабанной мельнице в среде спирта, распылительную сушку, гранулирование и формование методом литья или экструзии, удаление пластификатора при температуре 450-530°С, спекание при температуре 1480-1550°С в среде аргона при давлении 2-5 атм.

К недостаткам известного способа относится недостаточно высокая трещиностойкость (5,2 МПа·м1/2 ), что ограничивает области применения материала.

Задачей предлагаемого технического решения является увеличение трещиностойкости керамического материала.

Решение поставленной задачи обеспечивается тем, что предлагается шихта для керамического материала, содержащий ZrO2 и ZrN, отличающийся тем, что он дополнительно содержит Аl2 О3 при следующем соотношении компонентов, мас.%:

Аl2О3 10-40
ZrN 20-65
ZrO2остальное.

Приготовление предлагаемого керамического материала включает смешивание и измельчение исходных компонентов, прессование, сушку и спекание керамического материала при 1700-1800°С в среде азота при давлении 0,10-0,12 МПа с выдержкой при конечной температуре в течение 1 часа.

Предлагаемый керамический материал обладает высокой трещиностойкостью (коэффициентом интенсивности критических напряжений 7-14 МПа·м 1/2). Помимо этого, указанные свойства достигаются при значительно меньшем давлении азота при спекании (0,10-0,12 МПа), при формовании заготовок не требуется сложной операции литья (или экструзии).

При введении ZrN свыше 20 мас.% происходит частичная или полная стабилизация кубической фазы ZrO2, что увеличивает прочность и термостойкость материала.

Введение оксида алюминия совместно с нитридом циркония создает барьер для диффузионных процессов, что в значительной степени тормозит процесс рекристаллизации при спекании и позволяет получать материалы с малым размером зерна (1-3) мкм, что приводит к росту прочности и трещиностойкости.

При взаимодействии оксида и нитрида циркония на границе раздела зерен образуются твердые растворы переменного состава (оксинитриды циркония ZrN 1-XOX), что приводит к снижению температуры спекания и получения плотноспеченного материала с пористостью 1-2% и менее.

Уровень механических и физических свойств позволит использовать материалы этой системы в качестве конструкционных, коррозионностойких, устойчивых в контакте с расплавами металлов резистивных материалов, в качестве покрытий, резцов для цветных металлов.

Предлагаемое техническое решение обладает новизной, изобретательским уровнем и промышленно применимо. Составы керамического материала и свойства приведены в таблице.

Примеры осуществления предлагаемого способа.

Пример 1.

Совместным измельчением в вибрационной мельнице до дисперсности 1-2 мкм в среде этилового спирта с добавлением полиэтиленгликоля в качестве пластификатора изготавливают порошковую шихту, состоящую из 20 мас.% оксида алюминия, 40 мас.% диоксида циркония и 40 мас.% нитрида циркония.

Из полученной шихты прессуют образцы при давлении 100-110 МПа. Спекание проводят при температуре 1750°С в среде азота при давлении 0,10-0,42 МПа с выдержкой при конечной температуре в течение часа.

(Свойства в таблице)

Пример 2.

Порошковая шихта состоит из 5 мас.% оксида алюминия, 30 мас.% диоксида циркония и 65 мас.% нитрида циркония. Температура спекания в среде азота 1700°С.

Пример 3.

Порошковая шихта состоит из 20 мас.% оксида алюминия, 60 мас.% диоксида циркония и 20 мас.% нитрида циркония. Температура спекания в среде азота 1800°С.

Пример 4.

Порошковая шихта состоит из 40 мас.% оксида алюминия, 20 мас.% диоксида циркония и 40 мас.% нитрида циркония. Температура спекания в среде азота 1750°С.

Указанные примеры приведены в таблице. В таблице приведены также примеры (4, 5) вне заявляемой области и пример по способу-прототипу.

Заявляемый способ позволяет получать высокопрочный керамический материал для изготовления износостойких изделий, обладающий плотностью до 99% от теоретической, размером зерна 1-3 мкм и, как следствие, высокой прочностью и трещиностойкостью.

Таблица
ШИХТА ДЛЯ КЕРАМИЧЕСКОГО МАТЕРИАЛА НА ОСНОВЕ ОКСИДОВ ЦИРКОНИЯ И АЛЮМИНИЯ И НИТРИДА ЦИРКОНИЯ
№ примера Содержание компонентов, мас.% Температура спекания, °С Трещиностойкость, МПа·м1/2
Al2O3 ZrO2 ZrN
1 20 4040 175014
2 1025 651700 13
3 20 6020 180010
4 4020 401750 8,1
5* 8 1280 18205,8
6* 4540 151650 5,5
7* 17 6518 17005,2
Прототип шихта для керамического материала на основе оксидов циркония   и алюминия и нитрида циркония, патент № 2455261 шихта для керамического материала на основе оксидов циркония   и алюминия и нитрида циркония, патент № 2455261 шихта для керамического материала на основе оксидов циркония   и алюминия и нитрида циркония, патент № 2455261 1500 5,1
* - Примеры вне заявляемой области

Класс C04B35/486 тонкая керамика

способ изготовления керамики на основе диоксида циркония -  патент 2513973 (20.04.2014)
способ получения циркониевой керамики -  патент 2506247 (10.02.2014)
способ изготовления керамических изделий на основе диоксида циркония -  патент 2494077 (27.09.2013)
способ получения нанодисперсного порошка оксида циркония, стабилизированного оксидом иттрия и/или скандия -  патент 2492157 (10.09.2013)
способ изготовления заготовок керамических изделий -  патент 2491253 (27.08.2013)
способ получения пористого керамического материала -  патент 2476406 (27.02.2013)
способ получения нанокристаллических порошков и керамических материалов на основе смешанных оксидов редкоземельных элементов и металлов подгруппы ivb -  патент 2467983 (27.11.2012)
оксид циркония и способ его получения -  патент 2442752 (20.02.2012)
высокочистые порошки и изготовленные из них покрытия -  патент 2436752 (20.12.2011)
способ получения микро- и нанопористой керамики на основе диоксида циркония -  патент 2417967 (10.05.2011)

Класс C04B35/58 на основе боридов, нитридов или силицидов

боридная нанопленка или нанонить и способ их получения (варианты) -  патент 2524735 (10.08.2014)
способ получения композиционного керамического материала -  патент 2524061 (27.07.2014)
способ получения порошка диборида титана для материала смачиваемого катода алюминиевого электролизера -  патент 2498880 (20.11.2013)
способ получения керамики и композиционных материалов на основе ti3sic2 -  патент 2486164 (27.06.2013)
способ получения защитного покрытия и состав шихты для защитного покрытия -  патент 2471751 (10.01.2013)
способ получения шихты для синтеза нитрида кремния -  патент 2465197 (27.10.2012)
способ получения защитных покрытий на изделиях с углеродсодержащей основой -  патент 2458893 (20.08.2012)
способ получения сверхпроводящего трехкомпонентного борида -  патент 2443627 (27.02.2012)
материал смачиваемого катода алюминиевого электролизера -  патент 2412284 (20.02.2011)
материал для смачиваемого катода алюминиевого электролизера -  патент 2412283 (20.02.2011)
Наверх