способ производства металлов с керамическим анодом

Классы МПК:C25C3/06 алюминия
Автор(ы):, , , , , , , , , , ,
Патентообладатель(и):Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" (RU)
Приоритеты:
подача заявки:
2009-11-30
публикация патента:

Изобретение относится к области цветной металлургии и может быть использовано для получения металлов электролизом расплавленных электролитов с инертными анодами, в частности для электролитического производства алюминия из глиноземсодержащего фторидного расплава в электролизере с анодом, состоящим из оксидного проводящего керамического материала на основе диоксида олова, имеющего структуру типа рутила. Электролиз ведут с использованием анода, в состав которого введены совместно модифицирующие добавки, способные образовывать твердые растворы замещения с трехвалентными катионами А3+ и пятивалентными катионами В5+ в структуре рутила, при этом общее количество добавляемых соединений не превышает 30 мас.%, а процесс электролиза осуществляют при температуре менее 950°С. Модифицирующие добавки для введения в состав анода трехвалентных катионов А3+ содержат соединения Fe, Al, Мn, Cr, In, а для введения пятивалентных катионов В5+ - соединения Sb, Nb, Та. Анод также содержит металлическую компоненту, не взаимодействующую с оксидным материалом при температуре синтеза и эксплуатации, в количестве не более 40 мас%. В качестве металлической компоненты используют Сu, Ni, благородные металлы Ag, Au, Pt, Pd и их сплавы. Обеспечивается снижение скорости коррозии анодов и загрязнения получаемого металла. 2 з.п. ф-лы, 1 табл.

Формула изобретения

1. Способ электролитического производства металлов из расплавленных электролитов, содержащих оксиды этих металлов, включающий электролиз с использованием анода из оксидного проводящего керамического материала на основе диоксида олова, имеющего структуру типа рутила, с модифицирующими добавками для образования твердых растворов замещения с катионами трехвалентного металла А3+ и катионами пятивалентного металла В5+ в упомянутой структуре, отличающийся тем, что электролиз ведут с использованием анода, в котором общее количество модифицирующих добавок не превышает 30 мас.%, при температуре менее 950°С.

2. Способ по п.1, отличающийся тем, что используют анод, содержащий соединения Fe, Al, Mn, Cr, In в качестве модифицирующих добавок для получения катионов трехвалентного металла А3+ и соединения Sb, Nb, Та в качестве модифицирующих добавок для получения пятивалентных катионов В5+.

3. Способ по п.1, отличающийся тем, что используют анод, дополнительно содержащий металлическую компоненту, не взаимодействующую с диоксидом олова при температуре электролиза, выбранную из Сu, Ni, а также благородных металлов Ag, Au, Pt, Pd и их сплавов, в количестве не более 40 мас.%.

Описание изобретения к патенту

Изобретение относится к области цветной металлургии и может быть использовано для получения металлов электролизом расплавленных электролитов с инертными анодами, в частности для электролитического получения алюминия в криолит-глиноземных расплавах.

В последние десятилетия интенсивно ведутся работы по созданию малорасходуемых («несгораемых», или «инертных») анодов для замены расходуемых углеродистых анодов при электролитическом получении алюминия. В результате замены ожидаются снижение затрат на производство алюминия, большая компактность конструкции технологического аппарата (электролизера) с меньшими тепловыми потерями, экологически более чистое производство. Описано много оксидных материалов и материалов на оксидной основе в связи с возможностью изготовления из них малорасходуемых анодов [1]. Диоксид олова имеет структуру рутила и обладает очень низкой растворимостью в криолит-глиноземных расплавах в отсутствие восстановителей, поэтому в качестве инертных анодов для получения алюминия электролизом был предложен одним из первых [2, 3].

Чистый диоксид олова обладает низкой электрической проводимостью и плохой спекаемостью, что не позволяет получить керамический материал с высокой электропроводностью и низкой пористостью. Поэтому в состав керамики было предложено вводить различные модифицирующие добавки, улучшающие либо спекаемость, либо электропроводность материала. В качестве таких добавок с содержанием до 20 мас.% (обычно 1-3 мас.%) рассматривались оксиды Fe, Sb, Сu, Mn, Nb, Zn, Cr, Co, W, Cd, Zr, Та, In, Ni, Ca, Ba, V, Bi, Ti, Hf, Mg, Sr, Al, Ga, Si, Ge, As [3-6]. Как правило, выбор оптимального состава керамики осуществляли по двум ключевым признакам: высокая плотность/низкая пористость получающейся керамики (хорошая спекаемость) и высокая электропроводность материала. По этим признакам оптимальной считается керамика, содержащая 1-3 мас.% СuО и Sb2O3 в качестве добавок, повышающих спекаемость и электропроводность материала, соответственно. Поэтому именно такие составы подробно изучались и предлагались для внедрения в производство [1, 4, 6, 8, 9]. Керамики такого состава являются аналогами материалов настоящего изобретения.

Так как олово практически нерастворимо в металлическом алюминии, и его сегрегация на межзеренных границах при застывании металла приводит к резкому ухудшению механических свойств металла, технологические ограничения на допустимый уровень содержания олова очень жесткие. В марках первичного алюминия предельная концентрация примеси олова в ГОСТ 11069-2001 специально не указана, т.е. она определяется исходя из ограничения на содержание «остальных элементов» (не более 0,02-0,03% для алюминия технической чистоты).

Для уменьшения скорости коррозии анодов на основе диоксида олова было предложено использовать анод с экранированной трехфазной границей [6], а также анод с защитным плохопроводящим покрытием, улучшающим токораспределение [9]. Одним из перспективных путей повышения коррозионной стойкости материалов инертного анода на основе диоксида олова является синтез сложных соединений со структурой рутила. В [10] было предложено использовать в качестве таких соединений сложные оксиды с общей формулой Axспособ производства металлов с керамическим анодом, патент № 2452797 3+Bxспособ производства металлов с керамическим анодом, патент № 2452797 5+Sn2-2xO4 (А=Cr, Fe, Al, В=Sb, Nb, V), обладающие повышенной устойчивостью в криолит-глиноземном расплаве. Однако ни одно из предложенных решений не позволяет получать алюминий с содержанием олова менее 0,02-0,03% в расплавах и при температурах, традиционно используемых в промышленном производстве алюминия электролизом (криолитовое отношение КО=2.2-3.0, t=950-1000°С). Здесь криолитовое отношение КO=[NаF]/[АlF3] представляет собой отношение молярных концентраций фторида натрия и фторида алюминия в расплаве. Условно такие расплавы называют высотемпературными.

В последние годы активно исследуется возможность значительного снижения температуры электролиза путем применения средне- и низкотемпературных фторидных расплавов с пониженным КО и температурой плавления, что обеспечивает проведение процесса электролиза при температурах менее 950°С [1, 11]. Это должно позволить значительно снизить скорость коррозии материала анода в результате уменьшения растворимости диоксида олова при снижении КО расплава и температуры электролиза [12]. Однако при снижении КО и рабочей температуры расплава наблюдалось резкое ускорение коррозии анода [12, 13].

Прототипом настоящего изобретения является патент [3], в котором описан способ электролитического производства алюминия из глиноземсодержащего фторидного расплава, в условиях, когда часть анода, находящаяся в контакте с расплавом, состоит из оксидного проводящего керамического материала, химически стойкого к фторидному расплаву. Оксидный проводящий керамический материал по прототипу содержит по меньшей мере 80% SnO2, один или более оксидов из Fе2 О3, ZnO, Сr2О3, Sb2 О3, Вi2O3 и один или более оксидов из Та2О5, Nb2О5 и WO3. Указано, что один из подходящих составов керамических материалов включает 98%SnO2, 1,5%Sb2O 3, 0,3%Fе2О3 и 0,2%ZnO. Для изготовления анода керамические материалы указанных составов спекаются при температурах 1000-1450°С.

Основным недостатком прототипа является хотя и низкий, но значительно превышающий предельно допустимый уровень загрязнения алюминия оловом, что обусловлено значимой растворимостью диоксида олова в высокотемпературных фторидных расплавах. С другой стороны, экспериментальная проверка показала, что на анодах, составы которых соответствуют аналогам и прототипу, при снижении температуры расплава происходит резкое ускорение деградационных процессов (селективное растворение модифицирующих добавок, пропитка расплавом, рекристаллизация и переосаждение SnO2, увеличение пористости), сопровождающееся резким ростом напряжения на электролизере, появлением предельного тока и механическим разрушением керамического материала. Последнее ограничивает возможности по снижению скорости коррозии инертных анодов на основе диоксида олова.

Задачей настоящего изобретения является снижение скорости коррозии инертных анодов на основе диоксида олова и загрязнения получаемого металла компонентами анода.

Решение поставленной задачи достигается тем, что в состав керамического материала на основе диоксида олова, структурного типа рутила, вводится трехвалентный катион А3+ (или несколько трехвалентных катионов), способный образовывать твердые растворы замещения в структуре рутила. Для стабилизации образующегося твердого раствора замещения и повышения растворимости в решетке катиона А3+ и общей электропроводности керамического анода в его состав вводят одновременно пятивалентный катион В5+, также способный образовывать твердые растворы замещения в структуре рутила, для чего к диоксиду олова добавляют соответственно соединения А и соединения В, общее количество которых не превышает 30% мас. Процесс электролитического получения металлов с анодами из такого керамического материала проводится в глиноземсодержащих средне- и низкотемпературных фторидных расплавах при температурах электролиза менее 950°С.

Вариант изобретения дополняют частные отличительные признаки, способствующие решению поставленной задачи.

С целью введения в состав керамического материала катиона А 3+ при изготовлении анодов к диоксиду олова добавляются модифицирующие добавки - оксиды или другие соединения А, например соединения Fe, Al, Mn, Cr, In, а с целью введения катиона В 5+ - соединения В, например соединения Sb, Nb, Та.

С целью увеличения электропроводности керамического материала в состав анода может добавляться металлическая компонента, не взаимодействующая с оксидным материалом при температурах синтеза и эксплуатации, в количестве не более 40 мас%. В качестве металлической компоненты используются Сu, Ni, благородные металлы Ag, Au, Pt, Pd и их сплавы.

Достигаемый при использовании изобретения технический результат обеспечивается благодаря повышенной стойкости к деградации указанных анодов в процессе электролиза глиноземсодержащих средне- и низкотемпературных фторидных расплавов при температуре менее 950°С, что обеспечивает снижение скорости коррозии инертного анода и загрязнения получаемого алюминия компонентами анода.

Для экспериментальной проверки заявляемых материалов были подготовлены образцы анодов различного состава (см. в таблице) и проведено испытание их деградационной устойчивости в условиях анодной поляризации в криолит-глиноземных расплавах различного состава. Образцы керамических материалов на основе диоксида олова различного состава изготавливались методом твердофазного керамического синтеза, включающего совместный помол компонентов в планетарной мельнице, прессование с использованием временной технологической связки (поливинилацетат) и спекание при 1280-1300°С в течение 10 часов. Для проведения электрохимических деградационных испытаний аноды из керамики изготавливались в виде брусков 15×15×100 мм. В качестве катодов использовались бруски 15×15×100 мм композитного материала на основе диборида титана, либо углеродные бруски с покрытием из диборида титана. Керамический анод закреплялся на медной шпильке, выполняющей роль токоподвода, и область контакта изолировалась от воздействия паров расплава корундовым цементом. Глубина погружения электродов в расплав, как правило, составляла 60-70 мм (рабочая площадь анода - около 40 см2). Испытания проводились при рабочем токе 20 А (плотность анодного тока 0.5 А/см2). Электролиз проводили в графитовом тигле, содержащем 2.1 кг расплава, насыщенного по глинозему. Расплав готовился из смеси реагентов Nа3АlF6, АlF3 , Аl2О3 квалификации не ниже «ч». В ходе электролиза проводилась периодическая загрузка в расплав глинозема с интервалом 5-30 мин. Продолжительность испытаний составляла не менее 10 часов. Содержание олова в алюминии, полученном в ходе электролиза, определялось с использованием атомно-адсорбционного метода анализа после растворения пробы металла в соляной кислоте. Удельное электрическое сопротивление керамики при различных температурах измерялось четырехточечным методом с использованием платинового датчика.

В таблицу внесены результаты тестирования в криолит-глиноземных расплавах различных синтезированных материалов, как аналогов ( № 1-3) и прототипа ( № 4), так и новых материалов ( № 5-12). Все материалы испытывались в одинаковых условиях и имели незначительно отличающуюся пористость, что делает корректным их сопоставление на основании, в частности, содержания примеси олова в металлическом алюминии, полученном в ходе электролиза.

Из данных таблицы следует, что аналоги и прототип предложенного материала претерпевают полное разрушение при снижении температуры электролиза, что сопровождается существенным увеличением загрязнения алюминия оловом.

Одновременное введение в состав диоксида олова трех- и пятивалентных катионов А 3+ и В5+ позволяет значимо снизить уровень загрязнения продукта по олову при температуре 920°С: с 0,26% ( № 2) до 0.089-0.17% ( № 5, № 8, № 9). Однако наиболее существенный эффект наблюдается при проведении электролиза в низкотемпературном расплаве (750°С), в котором наблюдается очень высокая стабильность предлагаемых составов инертных анодов, а содержание олова в алюминии не превышает 110-130 ppm ( № 6, № 7). Введение трехвалентных катионов в состав керамики приводит к закономерному снижению проводимости материала. При небольшой концентрации соответствующей добавки (МnО2 в примерах № 5-7) проводимость снижается в 2-4 раза, что, однако, позволяет использовать такие материалы при электролизе. Дальнейшее увеличение содержания трехвалентных катионов путем повышения концентрации добавок (Fе2О3 и Аl2О3 в примерах № 8-10) делает невозможным проведение электролиза при 750°С из-за высокого сопротивления керамического анода. Неравномерное токораспределение, значительно усиливающееся с ростом сопротивления анодного материала, приводит к росту скорости коррозии анода (ср. № 5 и № 8-10). Снижение сопротивления таких материалов может быть достигнуто введением в состав анода металлической компоненты ( № 11), при этом достигается как снижение напряжения на ячейке в ходе электролиза, так и уровня загрязнения алюминия. Аналогичных результатов удается достигнуть и при введении металлической фазы в состав керамики с низким содержанием трехвалентного катиона ( № 12).

способ производства металлов с керамическим анодом, патент № 2452797 способ производства металлов с керамическим анодом, патент № 2452797

Как показывают результаты лабораторного тестирования, предлагаемые оксидные материалы обладают высокой стабильностью в глиноземсодержащих средне- и низкотемпературных фторидных расплавах в условиях анодной поляризации. Поэтому аноды из этих материалов имеют низкую скорость коррозии и позволяют получать алюминий с низким содержанием компонентов анода.

Источники информации

1. Galasiu, R. Galasiu, J. Thonstad, Inert Anodes for Aluminium Electrolysis, 1 st Edition, Aluminium-Verlag, Germany, 2007.

2. Беляев A.И., Студенцов Я.В. Электролиз глинозема с несгораемыми анодами из окислов // Легкие металлы. 1937. № 3. С.17-21.

3. H.-J. Klein, Process for the electrolytic production of aluminum, US Patent 3718550, 27.02.1973.

4. H.Alder, Process for the electrolysis of a molten charge using inconsumable bi-polar electrodes, US Patent 3930967, 6.01.1976.

5. H.Alder, Process for the electrolysis of a molten charge using inconsumable anodes, US Patent 3974046, 10.08.1976.

6. H.Alder, Inconsumable electrodes, US Patent 4057480, 8.11.1977.

7. H.Alder, Anode of dimensionally stable oxide-ceramic individual elements, US Patent 4357226, 2.11.1982.

8. D.R.Secrist, J.M.Clark, Corrosion-Resistant ceramic electrode for electrolytic processes, US Patent 4484997, 27.11.1984.

9. J.M.Clark, D.R.Secrist, Monolithic composite electrode for molten salt electrolysis, US Patent 4491510, 1.01.1985.

Класс C25C3/06 алюминия

способ обжига подины алюминиевого электролизера с обожженными анодами -  патент 2526351 (20.08.2014)
устройство для сбора твердых отходов, имеющихся в электролизном расплаве и жидком металле электролизной ванны, предназначенной для производства алюминия, посредством выскабливания днища ванны -  патент 2522411 (10.07.2014)
улучшение выливки алюминия приложением целенаправленного электромагнитного поля -  патент 2522053 (10.07.2014)
композиция для материала смачиваемого покрытия катода алюминиевого электролизера -  патент 2518032 (10.06.2014)
способ защиты катодных блоков со смачиваемым покрытием на основе диборида титана при обжиге электролизера -  патент 2502832 (27.12.2013)
составной токоотводящий стержень -  патент 2494174 (27.09.2013)
способ создания смачиваемого покрытия углеродной подины алюминиевого электролизера -  патент 2486292 (27.06.2013)
способ определения концентрации глинозема в криолит-глиноземном расплаве -  патент 2467095 (20.11.2012)
способ электролиза расплавленных солей с кислородсодержащими добавками с использованием инертного анода -  патент 2457286 (27.07.2012)
электролизер для производства алюминия -  патент 2457285 (27.07.2012)
Наверх