фазовый способ пеленгации и фазовый пеленгатор для его осуществления

Классы МПК:G01S3/46 с использованием разнесенных антенн и измерением фазового сдвига или временного запаздывания снимаемых с них сигналов (системы определения разности пути, пройденного сигналом) 
Автор(ы):, ,
Патентообладатель(и):Открытое акционерное общество "Авангард" (RU)
Приоритеты:
подача заявки:
2011-02-08
публикация патента:

Предлагаемые способ и устройство относятся к области радиоэлектроники и могут быть использованы для определения местоположения источников излучения сложных сигналов. Достигаемый технический результат изобретения - расширение функциональных возможностей путем определения дальности до источника радиоизлучений, а следовательно и его местоположения. Фазовый пеленгатор, реализующий предлагаемый фазовый способ пеленгации, содержит приемные антенны, три приемника, опорный генератор, генератор импульсов, электронный коммутатор, фазовращатель на 90°, три фазовых детектора, индикатор, гетеродин, смеситель, усилитель промежуточной частоты, два перемножителя, три полосовых фильтра, линию задержки, суммирующее устройство, вычитающее устройство, блок деления, пороговый блок, триггер, генератор счетных импульсов, логический элемент И, счетчик импульсов, вычислительное устройство и блок регистрации, определенным образом соединенные между собой. 2 н.п. ф-лы, 5 ил. фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283

фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283

Формула изобретения

1. Фазовый способ пеленгации, основанный на приеме сигналов, усилении и ограничении их по амплитуде, сравнении сигналов, прошедших два канала, по фазе, при этом сигнал одного из каналов предварительно сдвигают по фазе на 90°, устанавливают в азимутальной плоскости n приемных антенн по окружности радиусом d с возможностью их электронного вращения с угловой скоростью фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 вокруг приемной антенны, размещенной в центре окружности, коммутируют приемные антенны, размещенные по окружности, поочередно с частотой фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 , сигнал, принимаемый антенной, размещенной в центре окружности, преобразуют по частоте, выделяют напряжение промежуточной частоты, перемножают его с сигналами, поочередно принимаемыми n приемными антеннами, расположенными по окружности, выделяют первое фазомодулированное напряжение, выделяют низкочастотное напряжение с частотой фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 и сравнивают его по фазе с опорным напряжением, формируя точную, но неоднозначную шкалу пеленгации источника излучения сигнала, одновременно первое фазомодулированное напряжение подвергают автокорреляционной обработке, выделяют низкочастотное напряжение с частотой фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 и сравнивают его по фазе с опорным напряжением, формируют грубую, но однозначную шкалу пеленгации источника излучения сигнала, при каждой коммутации одновременно используют две приемные антенны, расположенные на концах диаметра, сигнал, принимаемый второй антенной, перемножают с напряжением промежуточной частоты, выделяют второе фазомодулированное напряжение и перемножают его с первым фазомодулированным напряжением, отличающийся тем, что амплитуды сигналов, принимаемых двумя антеннами, расположенными на концах диаметра, складывают друг с другом и вычитают друг из друга, делят полученные суммарную амплитуду на разностную, сравнивают частную амплитуду с пороговым напряжением Uпор и в случае его превышения фиксируют равносигнальное направление приемных антенн, расположенных на концах диаметра, относительно источника радиоизлучений, при котором частная амплитуда достигает максимального значения и превышает пороговый уровень Uпор, при каждом превышении порогового уровня Uпор формируют короткий положительный импульс, последовательность коротких положительных импульсов, полученную при электронном вращении приемных антенн, используют для формирования последовательности прямоугольных разнополярных импульсов, длительность каждого из которых равна периоду повторения Тп равносигнального направления двух приемных антенн, расположенных на концах диаметра, относительно источника радиоизлучения, измеряют период повторения Тп счетным методом и определяют дальность до источника радиоизлучений

фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 ,

где 2d - диаметр, на концах которого располагают две приемные антенны, по измеренным значения пеленга (азимута) и дальности определяют местоположение источник радиоизлучений.

2. Фазовый пеленгатор, содержащий последовательно включенные первую приемную антенну, первый приемник, смеситель, второй вход которого соединен с выходом гетеродина, усилитель промежуточной частоты, первый перемножитель, первый полосовой фильтр, линию задержки, второй фазовый детектор, второй вход которого соединен с выходом первого полосового фильтра, фазовращатель на 90°, первый фазовый детектор, второй вход которого соединен со вторым выходом опорного генератора, и индикатор, последовательно включенные опорный генератор, генератор импульсов, электронный коммутатор, n входов которого соединены с n выходами приемных антенн, размещенных по окружности радиусом d с возможностью электронного вращения вокруг первой приемной антенны, размещенной в центре окружности, и второй приемник, выход которого соединен со вторым входом первого перемножителя, последовательно подключенные к выходу первого полосового фильтра второй перемножитель, второй полосовой фильтр и третий фазовый детектор, второй вход которого соединен с третьим выходом опорного генератора, а выход подключен ко второму входу индикатора, ко второму выходу электронного коммутатора последовательно подключены третий приемник, третий перемножитель, второй вход которого соединен с выходом усилителя промежуточной частоты, и третий полосовой фильтр, выход которого соединен со вторым входом второго перемножителя, отличающийся тем, что он снабжен суммирующим устройством, вычитающим устройством, блоком деления, пороговым блоком, триггером, логическим элементом И, генератором счетных импульсов, счетчиком импульсов и вычислительным устройством, предназначенным для определения дальности до источника радиоизлучений, причем к первому выходу электронного коммутатора последовательно подключены суммирующее устройство, второй вход которого соединен со вторым выходом электронного коммутатора, блок деления, пороговый блок, триггер, логический элемент И, второй вход которого соединен с выходом генератора счетных импульсов, счетчик импульсов, вход сброса которого соединен с выходом порогового блока, вычислительное устройство и блок регистрации, второй вход блока деления через вычитающее устройство соединен с первым и вторым выходами электронного коммутатора, по измеренным значениям пеленга (азимута) и дальности определяют местоположение источника радиоизлучений.

Описание изобретения к патенту

Предлагаемые способ и устройство относятся к области радиоэлектроники и могут быть использованы для определения местоположения источников излучения сложных сигналов.

Известны фазовые способы пеленгации и фазовые пеленгаторы (патенты РФ № № 2.003.131, 2.006.872, 2.010.258, 2.012.010, 2.134.429, 2.155.352, 2.175.770, 2.290.658, 3.365.931; Кинкулькин И.Е. и др. Фазовый метод определения координат. М.: Сов радио, 1979; Дикарев В.И. Методы и технические решения приема и обработки радиосигналов. Учебник, СПб, 2000, с.166-264 и др.)

Из известных технических решений наиболее близким к предлагаемому является «Фазовый способ пеленгации и фазовый пеленгатор для его осуществления» (патент РФ № 2.365.931, G01S 3/46, 2007), которые и выбраны в качестве прототипа.

При фазовом способе пеленгации разность фаз фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 сигналов, принимаемых двумя разнесенными в пространстве антеннами, определяется выражением

фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283

где d - расстояние между разнесенными антеннами (измерительная база);

фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 - длина волны;

фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 - угол прихода радиоволн относительно нормали к базе.

При этом возникает противоречие между требованиями к точности измерений и однозначности отсчета угла фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 . Действительно, согласно вышеуказанной формуле фазовый способ пеленгации и фазовый пеленгатор тем чувствительнее к изменению угла фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 , чем больше относительный размер базы d/фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 . Но с ростом d/фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 уменьшается значение угловой координаты фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 , при котором разность фаз фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 превосходит значение 2фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 , т.е. наступает неоднозначность отсчета.

Известные способы пеленгации и фазовый пеленгатор устраняют указанное противоречие между требованиями к точности измерения и однозначности отсчета угла фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 . Однако они не полностью реализуют свои потенциальные возможности по определению дальности до источника радиоизлучений (ИРИ), а следовательно и местоположение ИРИ.

Технической задачей изобретения является расширение функциональных возможностей путем определения дальности до источника радиоизлучений, а следовательно и его местоположения.

Поставленная задача решается тем, что фазовый способ пеленгации, основанный в соответствии с ближайшим аналогом на приеме сигналов, усилении и ограничении их по амплитуде, сравнении сигналов, прошедших два канала, по фазе, при этом сигнал одного из каналов предварительно сдвигают по фазе на 90°, устанавливают в азимутальной плоскости n приемных антенн по окружности радиусом d с возможностью их электронного вращения с угловой скоростью фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 вокруг приемной антенны, размещенной в центре окружности, коммутируют приемные антенны, размещенные по окружности, поочередно с частотой фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 , сигнал, принимаемый антенной, размещенной в центре окружности, преобразуют по частоте, выделяют напряжение промежуточной частоты, перемножают его с сигналами, поочередно принимаемыми n приемными антеннами, расположенными по окружности, выделяют первое фазомодулированное напряжение, выделяют низкочастотное напряжение с частотой фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 и сравнивают его по фазе с опорным напряжением, формируя точную, но неоднозначную шкалу пеленгации источника излучения сигнала, одновременно первое фазомодулированное напряжение подвергают автокорреляционной обработке, выделяют низкочастотное напряжение с частотой фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 и сравнивают его по фазе с опорным напряжением, формируют грубую, но однозначную шкалу пеленгации источника излучения сигнала, при каждой коммутации одновременно используют две приемные антенны, расположенные на концах диаметра, сигнал, принимаемый второй антенной, перемножают с напряжением промежуточной частоты, выделяют второе фазомодулированное напряжение и перемножают его с первым фазомодулированным напряжением, отличается от ближайшего аналога тем, что амплитуды сигналов, принимаемых двумя антеннами, расположенными на концах диаметра, складывают друг с другом и вычитают друг из друга, делят полученные суммарную амплитуду на разностную, сравнивают частную амплитуду с пороговым напряжением Uпор и в случае его превышения фиксируют равносигнальное направление приемных антенн, расположенных на концах диаметра, относительно источника радиоизлучений, при котором частная амплитуда достигает максимального значения и превышает пороговый уровень Uпор , при каждом превышении порогового уровня Uпор формируют короткий положительный импульс, последовательность коротких положительных импульсов, полученную при электронном вращении приемных антенн, используют для формирования последовательности прямоугольных разнополярных импульсов, длительность каждого из которых равна периоду повторения Тп равносигнального направления двух приемных антенн, расположенных на концах диаметра, относительно источника радиоизлучения, измеряют период повторения Тп счетным методом и определяют дальность до источника радиоизлучений

фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283

где 2d - диаметр, на концах которого располагают две приемные антенны.

Поставленная задача решается тем, что фазовый пеленгатор, содержащий в соответствии с ближайшим аналогом последовательно включенные первую приемную антенну, первый приемник, смеситель, второй вход которого соединен с выходом гетеродина, усилитель промежуточной частоты, первый перемножитель, первый полосовой фильтр, линию задержки, второй фазовый детектор, второй вход которого соединен с выходом первого полосового фильтра, фазовращатель на 90°, первый фазовый детектор, второй вход которого соединен со вторым выходом опорного генератора, и индикатор, последовательно включенные опорный генератор, генератор импульсов, электронный коммутатор, n входов которого соединены с n выходами приемных антенн, размещенных по окружности радиусом d с возможностью электронного вращения вокруг первой приемной антенны, размещенной в центре окружности, и второй приемник, выход которого соединен со вторым входом первого перемножителя, последовательно подключенные к выходу первого полосового фильтра второй перемножитель, второй полосовой фильтр и третий фазовый детектор, второй вход которого соединен с третьим выходом опорного генератора, а выход подключен ко второму входу индикатора, ко второму выходу электронного коммутатора последовательно подключены третий приемник, третий перемножитель, второй вход которого соединен с выходом усилителя промежуточной частоты, и третий полосовой фильтр, выход которого соединен со вторым входом второго перемножителя, отличается от ближайшего аналога тем, что он снабжен суммирующим устройством, вычитающим устройством, блоком деления, пороговым блоком, триггером, логическим элементом И, генератором счетных импульсов, счетчиком импульсов и вычислительным устройством, причем к первому выходу электронного коммутатора последовательно подключены суммирующее устройство, второй вход которого соединен со вторым выходом электронного коммутатора, блок деления, пороговый блок, триггер, логический элемент И, второй вход которого соединен с выходом генератора счетных импульсов, счетчик импульсов, вход сброса которого соединен с выходом порогового блока, вычислительное устройство и блок регистрации, второй вход блока деления через вычитающее устройство соединен с первым и вторым выходами электронного коммутатора.

Структурная схема фазового пеленгатора, реализующего предлагаемый способ пеленгации, представлена на фиг.1. Взаимное расположение приемных антенн 1, 2.i (i=1, 2, фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 , n) и источника радиоизлучений ИРИ при равносигнальном направлении двух приемных антенн 2.2 и 2.10, расположенных на концах диаметра 2d, показано на фиг.2. Пример выполнения электронного коммутатора 7 показан на фиг.3. На фиг.4 показано изменение фазы выходного напряжения электронного коммутатора 7. Временные диаграммы, иллюстрирующие процедуру измерения периода повторения Тп счетным методом, изображены на фиг.5.

Фазовый пеленгатор содержит последовательно включенные первую приемную антенну 1, первый приемник 3, смеситель 12, второй вход которого соединен с выходом гетеродина 11, усилитель 13 промежуточной частоты, первый перемножитель 14, первый полосовой фильтр 15, линию задержки 16, второй фазовый детектор 17, второй вход которого соединен с выходом полосового фильтра 15, фазовращатель 8 на 90°, первый фазовый детектор 9, второй вход которого соединен со вторым выходом опорного генератора 5, и индикатор 10, последовательно включенные опорный генератор 5, генератор 6 импульсов, электронный коммутатор 7, n входов которого соединены с выходами n приемных антенн 2.i (i=1, 2, фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 , n), размещенных на окружности радиусом d с возможностью электронного вращения вокруг первой приемной антенны 1, размещенной в центре окружности, и второй приемник 4, выход которого соединен со вторым входом первого перемножителя 14, последовательно подключенные к выходу первого полосового фильтра 15 второй перемножитель 18, второй полосовой фильтр 19 и третий фазовый детектор 20, второй вход которого соединен с третьим выходом опорного генератора 5, а выход подключен ко второму входу индикатора 10, последовательно подключенные ко второму выходу электронного коммутатора 7 третий приемник 21, третий перемножитель 22, второй вход которого соединен с выходом усилителя 13 промежуточной частоты, и третий полосовой с фильтр 23, выход которого соединен со вторым выходом второго перемножителя 18, последовательно подключенные к первому выходу электронного коммутатора 7 суммирующее устройство 24, второй вход которого соединен с вторым выходом электронного коммутатора 7, блок 26 деления, второй вход которого через вычитающее устройство 25 соединен с первым и вторым выходами электронного коммутатора 7, пороговый блок 27, триггер 28, логический элемент И 30, второй вход которого соединен с выходом генератора 29 счетных импульсов, счетчик 31 импульсов, вход сброса которого соединен с выходом порогового блока 27, вычислительное устройство 32 и блок 33 регистрации.

Предлагаемый способ реализуется следующим образом.

Принимаемые сложные сигналы, например, с фазовой манипуляцией (ФМн)

u1(t)=U1 ·Cos[(wc±фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 w)t+фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 k(t)+фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 c],

фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283

фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283

где U1, U2, U 3, wc, фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 c, Тc - амплитуды, несущая частота, начальная фаза и длительность сигнала;

±фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 w - нестабильность несущей частоты сигнала, обусловленная различными дестабилизирующими факторами;

фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 k(t)={0, фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 } - манипулируемая составляющая фазы, отображающая закон фазовой манипуляции в соответствии с модулирующим кодом, причем фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 k(t)=const при kфазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 э<t<(k+1)фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 э и может изменяться скачком при t=kфазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 э, т.е. на границах между элементарными посылками (k=1, 2, фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 , N-1);

фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 э, N - длительность и количество элементарных посылок, из которых составлен сигнал длительностью Тсс=N·фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 э);

d - радиус окружности, на которой размещены приемные антенны 2.i (i=1, 2, фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 , n) (измерительная база);

фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 - скорость электронного вращения приемных антенн 2.i (i=1, 2, фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 , n) вокруг приемной антенны 1;

фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 - пеленг (азимут) на источник радиоизлучения ИРИ,

с выходов приемных антенн 1, 2.i (i=1, 2, фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 , n) непосредственно и через электронный коммутатор 7 поступают на входы приемников 3, 4 и 21, а затем на первые входы смесителя 12, перемножителей 14 и 22 соответственно.

Знаки «+» и «-» перед величинами

фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283

соответствуют диаметрально противоположным расположениям антенн 2.2 и 2.10 относительно приемной антенны 1, размещенной в центре окружности.

Электронный коммутатор 7 может быть выполнен различными средствами. Один из вариантов - это применение полупроводниковых диодов, обладающих малой емкостью, малым сопротивлением току прямого направления и большим сопротивлением току обратного направления. Пример схемы электронной коммутации представлен на фиг.3. Каждая пара антенн включается на вход приемников 4 и 21 через такие же коммутирующие цепи, которые на фиг.3 показаны только для двух антенн 2.2 и 2.10. Точки А1 и А2 коммутирующих цепей через резисторы R1 и R2 соединяются с генератором импульсов, от которого в течение всего периода коммутации Т, за исключением лишь короткого промежутка фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 , подается отрицательное напряжение. Положительные импульсы длительностью фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 подаются последовательно на каждую пару антенн и за период коммутации Т проходят на все n антенн.

Отрицательное напряжение в точках А1 и А2 запирает диоды Д1 Д2, Д3 и Д4, отключая цепи антенн 2.2 и 2.10 от входа приемников 4 и 21 и включая в цепь антенн нагрузочные резисторы R3 и R4 , и отпирает диоды Д5 и Д6, которые замыкают точки А1 и А2 на землю. Дроссели L 1 и L2 служат для пропускания постоянного тока диодов.

Положительный импульс делает диоды Д 1, Д2, Д3 и Д4 проводящими.

Антенны 2.2 и 2.10 соединяются с приемниками 4 и 21 при замкнутых накоротко резисторах R3 и R4 . Одновременно запираются диоды Д5 и Д6 и устраняется короткое замыкание на землю. Изменение фазы напряжения на входе приемников 4 и 21 происходит скачками в соответствии с подключением новой пары антенн через промежуток времени фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 . На фиг.4 показано изменение фазы выходных напряжений электронного коммутатора 7.

При любом способе коммутации на входы приемников 4 и 21 поступают напряжения высокой частоты переменной фазы, т.е. фазомодулированные. Период модуляции равен периоду коммутации, а начальная фаза кривой модуляции равна пеленгу. Фазомодулированные колебания являются также частотно-модулированными, так как частота, равная производной по времени, при переменной фазе будет переменной.

На второй вход смесителя 12 с выхода гетеродина 11 поступает напряжение

uг(t)=Uг·Cos(wгt+фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 г),

где Uг, w г, фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 г - амплитуда, частота и начальная фаза напряжения гетеродина.

На выходе смесителя 12 образуются напряжения комбинационных частот. Усилителем 13 выделяется напряжение промежуточной (разностной) частоты

uпр (t)=Uпр·Cos[(wпр±фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 w)t+фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 k(t)+фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 пр], 0фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 tфазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 Tc,

где

фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283

wпр=wc-wг - промежуточная (разностная) частота;

фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 пр=фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 с-фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 г,

которое подается на второй вход перемножителей 14 и 22. На выходе перемножителей 14 и 22 образуются фазомодулированные (ФМ) колебания на частоте w г гетеродина 11:

фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283

фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283

где

фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283

которые выделяются полосовыми фильтрами 15 и 23 соответственно.

Следовательно, полезная информация об угле фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 переносится на стабильную частоту wг гетеродина 11. Поэтому нестабильность несущей частоты принимаемых сигналов, вызванная различными дестабилизирующими факторами, не влияет на результат пеленгации, тем самым повышает точность определения местоположения источника радиоизлучений ИРИ.

Фазомодулированные колебания u4(t) и u5(t) поступают на два входа перемножителя 18, на выходе которого образуется напряжение

фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283

где

фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283

которое выделяется полосовым фильтром 19 и поступает на первый вход фазового детектора 20.

Следовательно, за счет использования при каждой коммутации одновременно двух антенн, расположенных на концах диаметра 2d, относительный размер измерительной базы увеличивается в 2 раза (2d/фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 ).

На второй вход фазового детектора 20 с третьего выхода опорного генератора 5 подается опорное напряжение

u0(t)=U0·Cosфазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 t.

На выходе фазового детектора 20 образуется постоянное напряжение

uн1(фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 )=Uн1·Cosфазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 ,

где

фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283

пропорциональное угловой координате фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 , которое фиксируется индикатором 10. Так формируется шкала пеленгации, которая является точной, но неоднозначной шкалой.

Одновременно фазомодулированное колебание u4 (t) подвергается автокорреляционной обработке с помощью автокоррелятора, состоящего из линии 16 задержки и фазового детектора 17.

В фазомодулированном колебании u4(t) величина

фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283

называемая индексом фазовой модуляции, характеризует максимальное значение отклонения фазы от нулевого значения, происходящего при электронном вращении приемных антенн 2.i (i=1, 2, фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 , n) вокруг приемной антенны 1 (фиг.2).

Приемные антенны 2.i (i=1, 2, фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 , n) поочередно с частотой фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 коммутируются с помощью электронного коммутатора 7, управляемого n-фазовым генератором 6 импульсов (фиг.3). Управляющие импульсы формируются генератором 6 импульсов из гармонического напряжения, вырабатываемого опорным генератором 5 (фиг.4)

u0(t)=U0·Cosфазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 t.

Однако при d/фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 >1/2 наступает неоднозначность отсчета угла фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 . Устранение указанной неоднозначности путем уменьшения отношения d/фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 обычно себя не оправдывает, так как при этом теряется основное достоинство широкобазового пеленгатора. Кроме того, в диапазоне метровых и особенно дециметровых волн брать малые значения d/фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 часто не удается из-за конструктивных соображений.

В связи с изложенным соображением возникает задача уменьшения индекса фазовой модуляции без уменьшения относительного размера измерительной базы d/фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 . Это достигается автокорреляционной обработкой фазомодулированного колебания u4(t) с помощью линии задержки 16 и фазового детектора 17. Причем время задержки фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 линии 16 задержки выбирается таким, чтобы уменьшить индекс фазовой модуляции до величины

фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283

где d1<d,

при которой справедливо неравенство d1/фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 <1/2, обеспечивающее однозначную пеленгацию источника радиоизлучений ИРИ. На выходе фазового детектора 17 образуется гармоническое напряжение

u7(t)=U 7·Cos(фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 t-фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 ), 0фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 tфазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 Tc,

где

фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283

которое через фазовращатель 8 на 90° поступает на первый вход фазового детектора 9, на второй вход которого со второго выхода опорного генератора 5 подается опорное напряжение u0(t). На выходе фазового детектора 9 образуется постоянное напряжение

uн2(фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 )=Uн2·Sinфазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 ,

где

фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283

пропорциональное угловой координате фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 , которое фиксируется индикатором 10. Так формируется шкала пеленгации, которая является грубой, но однозначной шкалой.

Фазовый сдвиг колебаний, принятых антеннами, размещенными на концах диаметра 2d, составляет

фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283

Величины 2d и фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 известны, поэтому, измерив фазовый сдвиг фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 , легко определить направляющий косинус и угол фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 :

фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283

А возникающая при этом неоднозначность отсчета угловой координаты фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 устраняется автокорреляционной обработкой принимаемых сложных сигналов. Причем предлагаемые технические решения инвариантны к нестабильности несущей частоты принимаемых сигналов виду их модуляции (манипуляции) и ширине спектра, а точное и однозначное измерение угловой координаты фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 осуществляется на стабильной частоте фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 опорного генератора.

За счет свертки спектра сложного ФМн-сигнала он преобразуется в узкополосные фазомодулированные (ФМ) напряжения, что дает возможность выделить их с помощью полосовых фильтров, отфильтровав при этом значительную часть шумов и помех, т.е. повысить реальную чувствительность частотно-фазового пеленгатора при сравнительно низком отношении сигнал/шум.

Расстояние R до источника радиоизлучений можно определить, используя равносигнальное направление, например, приемных антенн 2.2 и 2.10, размещенных на концах диаметра 2d, при котором амплитуды U2 и U3 сигналов, принимаемых этими антеннами, приблизительно равны (U2фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 U3). Эти амплитуды суммируются в суммирующем устройстве 24 (Uфазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 =U2+U3) и вычитаются в вычитающем устройстве 25 (Up=U2-U3). Полученные суммарная амплитуда Uфазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 и разностная амплитуда Up делятся в блоке 26 деления (Uд=Uфазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 /Up). На выходе последнего образуется максимальное напряжение Uдmax, которое превышает пороговое напряжение Uпор в пороговом блоке 27 (Uдmax >Uпор).

Такое превышение возможно только тогда, когда приемные антенны 2.2 и 2.10 в процессе коммутации (электронного вращения) проходят равносигнальное направление (фиг.2). При превышении порогового уровня Uпор в пороговом блоке 27 формируются короткие положительные импульсы (фиг.5, а). За счет электронного вращения с угловой скоростью фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 приемных антенн 2.2 и 2.10 вокруг неподвижной антенны 1 источник радиоизлученной ИРИ будет периодически с периодом Тп находиться на равносигнальном направлении приемных антенн 2.2 и 2.10. При этом дальность R до ИРИ можно оценить из выражения

фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283

где Тп - период повторения (фиг.5), который измеряется счетным методом.

Для этого последовательность коротких положительных импульсов (фиг.5, а) с выхода порогового блока 27 одновременно поступает на счетный вход триггера 28 и на вход сброса счетчика 31 импульсов. Каждый поступивший короткий положительный импульс перебрасывает триггер 28 в противоположное состояние. Триггер 28 имеет два устойчивых состояния. При этом формируется последовательность разнополярных импульсов, длительность каждого из которых равна периоду повторения Тп (фиг.5, б). Эти импульсы поступают на первый вход логического элемента И 30, на второй вход которого подаются счетные импульсы с выхода генератора 29 счетных импульсов (фиг.5, в). На выходе логического элемента И 30 выделяются только счетные импульсы, соответствующие по времени положительным прямоугольным импульсам (фиг.5, г). Количество m счетных импульсов, укладывающихся в периоде повторения Тп, подсчитывается счетчиком 31 и продвигается короткими положительными импульсами (фиг.5, а) в вычислительное устройство 32. Указанные импульсы поступают на вход сброса счетчика 31 импульсов, проталкивают эти импульсы на выход и сбрасывают содержимое счетчика 31 импульсов на нулевое значение, подготавливая его к дальнейшей работе.

В вычислительном устройстве 32 определяется дальность R до ИРИ

фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283

которая регистрируется блоком 33 регистрации.

При определении дальности R до другого ИРИ выбирается автоматически другая пара приемных антенн, для которых ИРИ будет находиться на равносигнальном направлении.

Таким образом, предлагаемые фазовый способ пеленгации и фазовый пеленгатор для его осуществления по сравнению с прототипом обеспечивают определение дальности R до источника радиоизлучений ИРИ. Это достигается использованием диаметра 2d, на концах которого размещаются приемные антенны, скорости электронного вращения (коммутации) приемных антенн вокруг неподвижной антенны и измеренного значения периода повторения Тп равносигнального направления приемных антенн. Причем период повторения Тп измеряется счетным методом. По измеренным значениям фазовый способ пеленгации и фазовый пеленгатор для его осуществления, патент № 2450283 и R определяется местоположение источника радиоизлучений ИРИ.

Тем самым функциональные возможности фазового способа пеленгации и фазового пеленгатора для его осуществления расширены.

Класс G01S3/46 с использованием разнесенных антенн и измерением фазового сдвига или временного запаздывания снимаемых с них сигналов (системы определения разности пути, пройденного сигналом) 

фазовый пеленгатор -  патент 2526533 (27.08.2014)
разностно-дальномерный способ определения координат источника радиоизлучения -  патент 2521084 (27.06.2014)
фазовый пеленгатор -  патент 2519593 (20.06.2014)
фазовый способ пеленгации и фазовый пеленгатор для его осуществления -  патент 2518428 (10.06.2014)
дальномерно-разностно-дальномерный способ определения координат местоположения источников радиоизлучения и реализующее его устройство -  патент 2510038 (20.03.2014)
акустооптический интерферометр -  патент 2504731 (20.01.2014)
триангуляционно-гиперболический способ определения координат радиоизлучающих воздушных объектов в пространстве -  патент 2503969 (10.01.2014)
корреляционно-фазовый пеленгатор -  патент 2474835 (10.02.2013)
система приема радиосигналов от источников радиоизлучений -  патент 2468380 (27.11.2012)
способ приема радиосигналов от источников радиоизлучений -  патент 2465614 (27.10.2012)
Наверх