способ производства заготовок из жаропрочных порошковых сплавов

Классы МПК:B22F3/16 с последовательным или повторным проведением процесса уплотнения и спекания 
C22C1/04 порошковой металлургией
Автор(ы):, , , ,
Патентообладатель(и):Федеральное государственное унитарное предприятие "Научно-производственный центр газотурбостроения "Салют" (ФГУП "НПЦ газотурбостроения "Салют") (RU)
Приоритеты:
подача заявки:
2010-11-30
публикация патента:

Изобретение относится к порошковой металлургии, в частности к получению заготовок из порошков жаропрочных никелевых сплавов. Может использоваться для изготовления деталей, стойких к окислению при повышенных температурах и работающих в условиях тяжелого нагружения. Порошок жаропрочного сплава засыпают в капсулу с отношением высоты капсулы к ее диаметру до 2,5:1, проводят утряску, горячее изотермическое прессование и жидкофазное спекание с выдержкой, охлаждением и горячей деформацией. Жидкофазное спекание проводят в интервале температур (Ts-TL), где Ts - температура солидуса, a TL - температура ликвидуса, при этом выдержку и последующее охлаждение заготовки проводят в прямой зависимости от ее массы. Способ позволяет сократить цикл получения заготовок во времени с учетом массы заготовки, обеспечивает повышение прочностных свойств и ресурса изделия. 6 з.п. ф-лы, 2 пр.

Формула изобретения

1. Способ изготовления заготовок из жаропрочных порошковых сплавов, включающий засыпку порошков в капсулу, утряску, горячее изотермическое прессование и жидкофазное спекание с выдержкой, охлаждением и горячей деформацией, отличающийся тем, что капсулу берут с соотношением высоты капсулы к ее диаметру до 2,5:1, а жидкофазное спекание проводят в интервале температур Ts -TL, где Ts - температура солидуса, a T L - температура ликвидуса, при этом выдержку при температуре жидкофазного спекания и последующее охлаждение заготовки проводят в прямой зависимости от ее массы.

2. Способ по п.1, отличающийся тем, что горячую деформацию проводят в виде осадки, штамповки, изотермической раскатки либо совмещения осадки с изотермической раскаткой.

3. Способ по п.1, отличающийся тем, что устанавливают прямую зависимость выдержки от массы заготовки, например, при массе заготовки до 10-15 кг выдержка составляет 10-20 мин, причем с увеличением массы заготовки на каждые 20÷30 кг выдержку увеличивают на 5-8 мин.

4. Способ по п.1, отличающийся тем, что устанавливают прямую зависимость времени охлаждения заготовки от ее массы, например, при массе заготовки до 15 кг время ее охлаждения 1,5 ч, свыше 15 кг - 2,0 ч.

5. Способ по п.2, отличающийся тем, что осадку проводят в несколько, не более 5-ти, стадий, при этом в первой стадии осадки заготовку деформируют на величину, не более чем 15% ее толщины, и отжигают в течение 3-4 ч при 0,7-0,8 температуры плавления материала.

6. Способ по п.5, отличающийся тем, что при стадийной осадке и достижении 70% общей деформации заготовки ее отжигают в течение 3-4 ч при 0,7-0,8 температуры плавления материала.

7. Способ по п.2, отличающийся тем, что изотермическую раскатку проводят при частоте вращения заготовки 0,5-1,0 об/мин, скорости подачи инструмента 0,002-0,08 мм/с и температуре деформации 1040-1080°C.

Описание изобретения к патенту

Изобретение относится к области производства заготовок из порошков жаропрочных никелевых сплавов, стойких к окислению при повышенных температурах и работающих в условиях тяжелого нагружения.

Известен наиболее близкий заявленному способ изготовления заготовок из жаропрочных порошковых сплавов, включающий засыпку порошков в капсулу, утряску, горячее изотермическое прессование и жидкофазное спекание с выдержкой, охлаждением и горячей деформацией (пат. RU № 2316413, кл. B22F 3/14 за 2008 г.).

Однако соблюдение предложенных режимов нагрева требует значительных энергозатрат и времени, при этом не учитывается масса заготовки, что может привести к появлению в изделии не спеченных участков.

Предложенный способ отличается от известного тем, что капсулу берут с соотношением высоты капсулы к ее диаметру до 2,5:1, а жидкофазное спекание проводят в интервале температур Ts÷TL, где Ts - температура солидуса, а TL - температура ликвидуса, при этом выдержку при температуре жидкофазного спекания и последующее охлаждение заготовки проводят в прямой зависимости от ее массы.

Предложенный способ отличается от известного и тем, что горячую деформацию проводят в виде осадки, штамповки, изотермической раскатки, либо совмещения осадки с изотермической раскаткой. В предложенном способе прямую зависимость выдержки от массы заготовки устанавливают: при массе заготовки до 10÷15 кг - выдержку - 10÷20 мин, а с увеличением массы - на каждые 20-30 кг выдержку увеличивают на 5-8 мин, а прямую зависимость времени охлаждения от массы заготовки устанавливают: при массе до 15 кг - время охлаждения: 1,5 час, свыше 15 кг - 2,0 часа. Осадку проводят в несколько стадий, но не более 5-ти, при этом в первой стадии осадки заготовку деформируют на величину, не более чем 15% ее толщины и отжигают в течение 3÷4 часов при 0,7÷0,8 температуры плавления материала. При стадийной осадке и достижении 70% общей деформации заготовки ее отжигают в течение 3÷4 часов при 0,7÷0,8 температуры плавления материала. Изотермическую раскатку проводят при частоте вращения заготовки: 0,5-1,0 об/мин, скорости подачи инструмента: 0,002-0,08 мм/сек и температуре деформации: 1040÷1080°С.

Техническим результатом предложения является обеспечение макро- и микроструктуры заготовок из порошковых сплавов, сокращение цикла получения заготовок во времени с учетом массы заготовки.

Технический результат достигается тем, что в способе изготовления заготовок из жаропрочных порошковых сплавов, включающий засыпку порошков в капсулу, утряску, горячее изотермическое прессование и жидкофазное спекание с выдержкой, охлаждением и горячей деформацией, капсулу берут с соотношением высоты капсулы к ее диаметру до 2,5:1, а жидкофазное спекание проводят в интервале температур Ts ÷TL, где Ts - температура солидуса, а TL - температура ликвидуса, при этом выдержку при температуре жидкофазного спекания и последующее охлаждение заготовки проводят в прямой зависимости от ее массы.

Технический результат достигается тем, что горячую деформацию проводят в виде осадки, штамповки, изотермической раскатки, либо совмещения осадки с изотермической раскаткой.

Технический результат достигается тем, что устанавливают прямую зависимость выдержки от массы заготовки: например, при массе заготовки до 10÷15 кг - выдержка - 10÷20 мин, а с увеличением массы - на каждые 20-30 кг выдержку увеличивают на 5-8 мин, а прямую зависимость времени охлаждения от массы заготовки устанавливают: при массе до 15 кг - время охлаждения: 1,5 час, свыше 15 кг - 2,0 часа. Осадку же проводят в несколько стадий (не более 5-ти), при этом в первой стадии осадки заготовку деформируют на величину, не более чем 15% ее толщины и отжигают в течение 3÷4 часов при 0,7÷0,8 температуры плавления материала. А при стадийной осадке и достижении 70% общей деформации заготовки ее отжигают в течение 3÷4 часов при 0,7÷0,8 температуры плавления материала. При этом эзотермическую раскатку проводят при частоте вращения заготовки: 0,5÷1,0 об/мин, скорости подачи инструмента: 0,002÷0,08 мм/сек и температуре деформации: 1040÷1080°С.

Ниже приведены примеры реализации способа.

Пример 1.

В металлическую капсулу из стали 20 с соотношением высоты к диаметру - 2÷1 засыпают гранулы из сплава ЭП741 НП, гранулометрический состав которых: 100-150 мкм. Масса засыпки - 8 кг. Заготовку подвергают горячему изостатическому прессованию (ГИП) и жидкофазному спеканию при t - 1285±5°C. Выдержка при спекании составляла 15 минут. После спекания заготовку осаживали при 1100°С без бокового подпора, т.е. отсутствовал пресс-инструмент. Осадку производили на прессе силой 400 т.е. Перед осадкой заготовку теплоизолировали.

На третьей стадии осадки наблюдалось падение напряжения течения на 25-30%, что указывало на формирование в материале мелкокристаллической структуры и реализации процесса деформации в режиме сверхпластичности. После ГИП и осадки плотность материала достигла 8,27 г/см, что соответствовало плотности монолитного материала.

Исследование свойств материала заготовки показало, что временное сопротивление разрыву составляло 1550 МПа, а пластичность 27%. При этом было достигнуто снижение энергозатрат на 30%, а коэффициент использования металла (КИМ) составил 0,57 при 0,1 в реальном производстве при имеющейся типовой технологии. Все это достигнуто за счет сокращения времени на нагревание и спекание и получения заданной формы изделия во время свободной осадки без применения дорогостоящей оснастки.

Пример 2

В металлическую капсулу из стали 20 с соотношением высоты к диаметру - 2-1 засыпают гранулы жаропрочного порошкового сплава ЭП741 НП. Масса засыпки - 45 кг. Заготовку подвергают горячему изостатическому прессованию (ГИП) и жидкофазному спеканию при t - 1285±°C и выдержке - 28 мин. Далее заготовку подвергали горячей осадке на прессе силой 16000 тс при температуре 1100±5°C без бокового подпора и изотермической раскатке. В результате осадки в материале сформировалась структура с размером зерна - 20 мкм, что положительно сказалось на процессе раскатки. Раскатку осуществляли при температуре 1100°С со скоростью вращения заготовки 1,0 об/мин. В данном случае КИМ составил 0,8 при экономии никелевого сплава на уровне 40%. Механические свойства превышали заданные по техническим условиям. При этом было отмечено превышение прочности, что обеспечит повышение ресурса изделия в 1,5÷2 раза диска турбины авиационного двигателя, что соответствует требованиям к двигателю 5-го поколения.

Класс B22F3/16 с последовательным или повторным проведением процесса уплотнения и спекания 

твердосплавное тело -  патент 2521937 (10.07.2014)
способ получения заготовок из порошковых металлических материалов -  патент 2504455 (20.01.2014)
способ прессования труб из магниевых гранул -  патент 2486991 (10.07.2013)
способ получения изделий из пористых материалов искусственного и естественного происхождения с помощью холодного объемного деформирования -  патент 2413593 (10.03.2011)
способ изготовления ферритовых изделий -  патент 2410200 (27.01.2011)
способ получения композиционного материала на основе магниевой матрицы -  патент 2410199 (27.01.2011)
способ изготовления дисперсно-упрочненных изделий электроэрозионного назначения на основе меди -  патент 2402406 (27.10.2010)
способ получения антифрикционных порошковых материалов на основе меди -  патент 2378404 (10.01.2010)
способ прессования гранул магниевых сплавов -  патент 2370342 (20.10.2009)
контактная пластина и способ ее изготовления -  патент 2351437 (10.04.2009)

Класс C22C1/04 порошковой металлургией

способ получения алюминиевого композиционного материала с ультрамелкозернистой структурой -  патент 2529609 (27.09.2014)
способ приготовления твердосплавной шихты с упрочняющими частицами наноразмера -  патент 2525192 (10.08.2014)
порошковый износо- корозионно-стойкий материал на основе железа -  патент 2523648 (20.07.2014)
способ получения многослойного композита на основе ниобия и алюминия с использованием комбинированной механической обработки -  патент 2521945 (10.07.2014)
жаропрочный порошковый сплав на основе никеля, стойкий к сульфидной коррозии и изделие, изготовленное из него -  патент 2516681 (20.05.2014)
способ испытания на сульфидную коррозию жаропрочных порошковых никелевых сплавов -  патент 2516271 (20.05.2014)
способ получения изделий из сложнолегированных порошковых жаропрочных никелевых сплавов -  патент 2516267 (20.05.2014)
способ изготовления порошкового композита сu-cd/nb для электроконтактного применения -  патент 2516236 (20.05.2014)
способ получения порошков сплавов на основе титана, циркония и гафния, легированных элементами ni, cu, ta, w, re, os и ir -  патент 2507034 (20.02.2014)
способы производства нефтепромысловых разлагаемых сплавов и соответствующих продуктов -  патент 2501873 (20.12.2013)
Наверх