способ комплексной утилизации отходов, образующихся при обработке титановых полуфабрикатов, с получением гексафторотитаната калия

Классы МПК:C01G23/00 Соединения титана
C23F1/46 регенерация травильных составов
Автор(ы):,
Патентообладатель(и):Открытое акционерное общество "Корпорация ВСМПО-АВИСМА" (RU)
Приоритеты:
подача заявки:
2010-09-27
публикация патента:

Изобретение может быть использовано в химической промышленности. Способ комплексной утилизации отходов, образующихся при обработке титановых полуфабрикатов, включает химический анализ отработанных кислотных отходов (ОТКР), корректировку в растворе молярного соотношения титана и фтора до критических величин, добавление в раствор расчетного количества щелочного металла, фильтрацию, промывку и сушку соли. В ОТКР повышают концентрацию титана до 90±5 г/л растворением твердых мелкофракционных титановых отходов, корректируют в ОТКР соотношение молярных долей F/Ti до величины, равной 6,3-6,8, добавлением необходимого количества плавиковой кислоты. Изобретение позволяет создать высокорентабельную технологию получения ценного товарного продукта - гексафторотитаната калия, снизить нагрузку на экологическую среду и класс опасности отходов, идущих в отвалы. 4 табл., 2 пр.

Формула изобретения

Способ комплексной утилизации отходов, образующихся при обработке титановых полуфабрикатов, с получением гексафторотитаната калия, включающий химический анализ отработанных кислотных отходов (ОТКР), корректировку в растворе молярного соотношения титана и фтора до критических величин, добавление в раствор расчетного количества щелочного металла, фильтрацию, промывку и сушку соли, отличающийся тем, что в ОТКР повышают концентрацию титана до 90±5 г/л растворением твердых мелкофракционных титановых отходов, корректируют в ОТКР соотношение молярных долей F/Ti до величины, равной 6,3-6,8, добавлением необходимого количества плавиковой кислоты, объем которой рассчитывают по формуле

способ комплексной утилизации отходов, образующихся при обработке   титановых полуфабрикатов, с получением гексафторотитаната калия, патент № 2448907

где VHF - объем плавиковой кислоты, л;

VОТКР - объем ОТКР, л;

CTi - концентрация титана в ОТКР, г/л;

0,396 - величина молярного соотношения F/Ti;

(6,3-6,8) - соотношение молярных долей F/Ti в растворе;

CF - концентрация фтора в исходном ОТКР, г/л;

KHF - коэффициент, зависящий от концентрации вводимой плавиковой кислоты;

1,05 - коэффициент пересчета фтора на плавиковую кислоту;

DHF - удельный вес плавиковой кислоты, г/см3,

с последующим добавлением солей калия, масса которых рассчитывается по формуле

MCK=VОТКР·C Ti·1,625·(2,1-2,7),

где MCK - масса соли калия, г;

VОТКР - объем ОТКР, л;

CTi - концентрация титана в ОТКР, г/л;

1,625 - величина молярного соотношения K/Ti;

(2,1-2,7) - величина избытка соли калия для кристаллизации K2 TiF6 в зависимости от концентрации титана.

Описание изобретения к патенту

Изобретение относится к технологии утилизации отходов, включающих соединения титана, и может быть использовано для улучшения экологии путем переработки техногенных отходов, возникающих в процессе производства полуфабрикатов и изделий из сплавов на основе титана, а также для получения товарного продукта - гексафторотитаната калия (K2ТiF6). K2TiF6 с большим эффектом используют при переплавке Аl и его сплавов для получения слитков с тонкой структурой зерен и лучшими механическими свойствами, а также для получения лигатур Al-Ti и Al-Ti-B.

В промышленности титановые сплавы производятся в виде слитков, которые затем перерабатываются в полуфабрикаты и детали методом ковки, прокатки и механической обработки. В производстве изделий и полуфабрикатов наиболее широкое распространение получили технологии, основанные на горячей деформации. При нагреве металла на воздухе на его поверхности образуется окисный слой, подлежащий удалению на последующих переделах.

Как правило, окисный слой удаляют в два этапа - на первом используют механическое удаление (дробеметной, пескоструйной, абразивной обработкой и резанием), на втором этапе используются технологии травления в кислотах для снятия небольшого слоя металла с механически обработанной поверхности.

Образующиеся в процессе этих операций отходы по совокупности общих признаков можно разделить на группы.

1. Жидкие отходы, которые образуются при травлении

Это насыщенные фторидами титана травильные растворы (водные растворы плавиковой кислоты (2-7 вес.% HF), в которые для интенсификации химической реакции добавляются или соляная, или азотная, или серная кислота при концентрации от 5 до 20 вес %). Для увеличения долговечности раствора периодически добавляют плавиковую кислоту и минеральные кислоты. В процессе травления образуются фториды титана, процесс схематически можно представить следующими химическими реакциями.

Ti+3HFспособ комплексной утилизации отходов, образующихся при обработке   титановых полуфабрикатов, с получением гексафторотитаната калия, патент № 2448907 ТiF3+3/2H2F

TiF 3+Fспособ комплексной утилизации отходов, образующихся при обработке   титановых полуфабрикатов, с получением гексафторотитаната калия, патент № 2448907 TiF4

При насыщении травильного раствора фторидами титана, в зависимости от температуры раствора, состояния окисления титана, от концентрации кислоты и примесей, кислотный травильный раствор становится отработанным (ОТКР), реакция резко замедляется.

ОТКР содержит фториды титана (в пересчете на металлический титан от 20 до 25 г/л), минеральные кислоты, которые используются при травлении на 20-30%, иногда избыток плавиковой кислоты и различные легирующие компоненты: Al, V, Cr, Mn, Sn, Zr. Это наиболее агрессивные и опасные в экологическом отношении отходы.

2. Твердые мелкофракционные титановые отходы

2.1 Абразивные отходы, образующиеся в процессе абразивной зачистки абразивными лентами, наждачными кругами и лепестковыми кругами, состоящими из набора наждачной ткани. В качестве охлаждения используется вода. Абразивные отходы представляют собой смесь мелкой фракции: титана и титановой окалины, наждака (карбид кремния), а также возможно наличие текстильного охвостья от отработанной наждачной ленты. Влажность отходов колеблется в пределах от 12% до 20%. Гранулометрический состав:

- частицы фракций более 0,2 мм составляют в смеси 36,7%;

- менее 0,2 мм - 63,3%.

В таблице 1 приведен состав абразивных отходов.

Таблица 1
Наименование компонентов TiSiC Н2ОТекстильное охвостье
%-ный состав35-42 15-40 до 20до 14

2.2. При измельчении титановых полуфабрикатов на краты производится огневая резка на воздухе. В результате образуется шлак от огневого реза, содержащий металлический титан, оксиды, нитриды, карбиды титана.

Хим. состав шлака приведен в таблице 2.

Таблица 2
Наименование элементов Ti Al V Mo Cr Fe
мас.% 55-70 2-5 0,8-1,5 2,0 0,5 7,0
Наименование элементовZr С W P S N2O 2
мас.%0,7 0,5 0,15 0,02 0,01 0,520

Все вышеуказанные отходы относятся к разряду техногенных веществ (принадлежат к 3, 4 классу опасности по ГОСТ 1630-93), накапливаются в отстойниках, на полигонах твердых отходов и крайне негативно влияют на экологию. Кроме того, промышленность несет большие постоянные затраты на их захоронение.

Вместе с тем, следует отметить, что данные техногенные отходы содержат высокую концентрацию дорогостоящего титана. Извлечение химических соединений из отходов титана позволит использовать его в качестве сырья для получения товарного продукта - гексафторотитаната щелочного металла, в частности калия. Кроме того, утилизация отходов дает возможность освободить территорию, занимаемую отвалами, радикально снизить воздействие вредных техногенных отходов на окружающую среду.

Известен способ восстановления фторидов титана из ОТКР посредством корректировки молярного соотношения титана и фтора до критических диапазонов с последующим добавлением избыточного количества соединений щелочных металлов (величина избытка молярного соотношения щелочного металла к титану от 2,1 до 2,7) с получением соли гексафторотитаната калия (K2 TiF6), выпадающего в осадок. Соль фильтруют, промывают, производят «старение» соли, сушат. Фильтрат нейтрализуют известью. (Пат. США № 4,943,419 от 24.07.1990, доктор Joseph A.Megy) - прототип.

Недостатком известного способа является:

- способ не предусматривает переработку мелкофракционных отходов, возникающих в процессе механического удаления окисленного слоя титановых полуфабрикатов;

- малая производительность по выходу годного продукта гексафторотитаната калия (K2 TiF6), что делает низкорентабельным производство данной продукции. Это связано с малой концентрацией титана в ОТКР: согласно технологической инструкции при травлении полуфабрикатов из сплавов титана запрещается накопление титана в ОТКР более 25 г/л, с целью уменьшения наводораживания сплавов и улучшения технических характеристик полуфабрикатов, предназначенных для аэрокосмической индустрии.

Задачей, на решение которой направлено заявленное изобретение, является производство ценного товарного продукта (гексафторотитаната калия) в процессе комплексной утилизации всего спектра титансодержащих техногенных отходов, образующихся в процессе удаления окисного слоя, как жидких (ОТКР), так и твердых (мелкофракционных, образующихся при абразивной обработке, а также подобных им, возникающих во время огневой резки или механической обработки режущим инструментом).

Техническим результатом, достигаемым при осуществлении изобретения, является:

- создание высокорентабельной технологии получения гексафторотитаната калия, эффективно используемого для модификации алюминиевых сплавов;

- резкое понижение нагрузки на экологическую среду путем уменьшения отходов, идущих в отвалы, и понижения их класса опасности.

Решение поставленной задачи достигается тем, что в способе комплексной утилизации отходов, образующихся при обработке титановых полуфабрикатов, с получением гексафторотитаната калия, включающем химический анализ ОТКР, корректировку в растворе молярного соотношения титана и фтора до критических величин, добавление в раствор расчетного количества щелочного металла, фильтрацию, промывку и сушку соли, в ОТКР повышают концентрацию титана до 90±5 г/л растворением твердых мелкофракционных титановых отходов, корректируют в ОТКР соотношение молярных долей F/Ti до величины, равной 6,3-6,8, добавлением необходимого количества плавиковой кислоты, объем которой рассчитывают по формуле:

способ комплексной утилизации отходов, образующихся при обработке   титановых полуфабрикатов, с получением гексафторотитаната калия, патент № 2448907

где:

VHF - объем плавиковой кислоты, л;

VОТКР - объем ОТКР, л;

СTi - концентрация титана в ОТКР, г/л;

0,396 - величина молярного соотношения F/Ti;

(6,3-6,8) - соотношение молярных долей F/Ti в растворе;

СF - концентрация фтора в исходном ОТКР, г/л;

КHF - коэффициент, зависящий от концентрации вводимой плавиковой кислоты;

1,05 - коэффициент пересчета фтора на плавиковую кислоту;

DHF - удельный вес плавиковой кислоты, г/см3,

С последующим добавлением солей калия, масса которых рассчитывается по формуле:

МСК=VОТКР×Cti×1,625×(2,1-2,7),

где:

МСК - масса соли калия, г;

VОТКР - объем ОТКР с соотношением молярных долей F/Ti в растворе, равным 6,3-6,8, л;

Cti - концентрация титана в ОТКР, г/л;

1,625 - величина молярного соотношения K/Ti;

(2,1-2,7) - величина избытка соли калия для кристаллизации K2 TiF6, в зависимости от концентрации титана.

Промышленная применимость заявленного способа подтверждается следующим примером конкретного выполнения (корректировка ОТКР и добавление солей калия выполнялись в соответствии с вышеприведенными формулами).

Опыт 1

Восстановление K2TiF6 из ОТКР с дополнительно растворенным в нем дробленным до фракции 10 мм металлическим шлаком.

Для опыта был взят азотно-плавиковый ОТКР из цеховой ванны. Объем - 2000 мл, состав: 19 г/л Ti, свободного F - 0, HNO3 - 17,88%, Al - 0,6 г/л, V - 0,5 г/л. В растворе титан находился в 4-валентной форме, дополнительного окисления не требовалось.

Для увеличения концентрации титана в ОТКР дополнительно растворили 220 г металлического шлака от огневого реза, содержащего 60,2% титана, для чего в 2000 мл ОТКР дополнительно добавлено 204 мл 45% раствора плавиковой кислоты. Состав ОТКР после растворения шлака: HNO3 - 18%, свободной HF - 2.6%, Ti - 85 г/л.

Для восстановления K2TiF6 из ОТКР для корректировки молярных долей F/Ti до величины 6,8 добавлена плавиковая кислота в количестве 276 мл 45% HF на 2 л ОТКР, после чего добавили карбонат калия в количестве 800 г. Величина избытка соли щелочного металла для высокой концентрации титана в ОТКР (85 г/л) составила 2.9, т.к. меньший избыток соли (2, 7) смещает равновесие в сторону распада K2TiF6 на ионы, тем самым снижается производительность по выходу годного продукта.

Выпавший осадок соли отфильтровали, промыли на фильтре 2 раза, оставили во влажном состоянии на сутки для «старения» кристаллов. Отмечен рост кристаллов (фракция кристаллов составила от 3 до 6 мм), после чего еще раз промыли и высушили осадок.

Результаты восстановления K2TiF6 из ОТКР с концентрацией титана 85 г/л приведены в таблице 3.

Таблица 3
Кристаллизатор Вес мокрого отстоя, г Вес сухого осадка, г % влажности Состав фильтрата % осаждения Ti Объем фильтрата, мл
HNO3, % НFсвоб., г/лTi, г/л
K 2CO3 567405 4018 04,0 941500

Опыт 2

Восстановление K2TiF6 из ОТКР с дополнительно растворенными в нем очищенными абразивными отходами.

Для опыта был взят азотно-плавиковый ОТКР из цеховой ванны перед сливом для нейтрализации известью. Состав ОТКР: НNO3 - 26,17%, HF свободного - 0,9%, Ti - 22 г/л, объем ОТКР - 2000 мл. В растворе титан находился в 4-валентной форме, дополнительного окисления не требуется. Для увеличения концентрации титана в ОТКР дополнительно растворили 350 г очищенных абразивных отходов, содержащих 40% титана, для чего в 2000 мл ОТКР дополнительно добавлено 460 мл 45% раствора плавиковой кислоты

Состав ОТКР после растворения абразивных отходов: НNO3 - 26,5%, HF свободной - 1,0%, Ti - 88,8 г/л. Для восстановления гексафторотитаната калия в ОТКР с концентрацией титана 88,8 г/л для корректировки молярных долей F/Ti до величины 6,8 добавлена плавиковая кислота в количестве 341 мл 45% раствора на 2000 мл ОТКР. Затем в ОТКР добавили карбонат калия в количестве 897,84 г для кристаллизации K2TiF6. Выпавший осадок соли отфильтровали, промыли дважды водой, для «старения» кристаллов оставили соль во влажном состоянии на сутки. После «старения» наблюдался рост кристаллов и выделение легирующих компонентов на их поверхности, после чего осадок промыли еще раз и высушили. В процессе проведения опыта соблюдались все условия восстановления K2TiF6.

Результаты восстановления гексафторотитаната калия из ОТКР, содержащего 88,8 г/л титана, приведены в таблице 4.

Таблица 4
Кристаллиза

тор
Вес мокрого отстоя, г Вес сухого осадка, г % влажности Состав фильтрата % осаждения Ti Объем фильтрата, мл
HNO3, % НFсвоб., г/лTi, г/л
K 2CO3 585412 4226,2 06,4 92,81450

Предлагаемый способ позволяет:

- утилизировать техногенные отходы в виде металлического шлака от огневого реза титана, абразивные отходы путем растворения их в ОТКР с получением раствора солей фторида титана высокой концентрации (от 60 г/л до 90 г/л в пересчете на металлический титан);

- получить товарный продукт - гексафторотитанат калия (K2TiF6), широко используемый в алюминиевой промышленности в качестве модификатора сплавов на основе алюминия;

- повысить производительность по выходу продукта в 2-3 раза;

- сократить загрязнение окружающей среды;

- использовать фильтрат повторно для травления или осветления полуфабрикатов из титановых сплавов, после чего образующийся ОТКР, содержащий повышенное содержание легирующих элементов, влияющих на чистоту продукта, нейтрализовать известью;

- уменьшить затраты на нейтрализацию ОТКР.

Класс C01G23/00 Соединения титана

способ получения наноразмерных порошков титаната лития -  патент 2528839 (20.09.2014)
смазочная композиция -  патент 2525238 (10.08.2014)
антифрикционная смазка -  патент 2524267 (27.07.2014)
способ приготовления титаноксидного фотокатализатора, активного в видимой области спектра -  патент 2520100 (20.06.2014)
способ получения титаната лития -  патент 2519840 (20.06.2014)
обогащенный титаном остаток ильменита, его применение и способ получения титанового пигмента -  патент 2518860 (10.06.2014)
способ получения неорганического материала на основе оксинитридов титана -  патент 2518363 (10.06.2014)
фотокаталитические композиционные материалы, содержащие титан и известняк без диоксида титана -  патент 2516536 (20.05.2014)
способ получения частиц диоксида титана -  патент 2515449 (10.05.2014)
ферромагнитный полупроводниковый материал -  патент 2515426 (10.05.2014)

Класс C23F1/46 регенерация травильных составов

способ получения гидроксохроматов меди(+2) -  патент 2504517 (20.01.2014)
установка для регенерации соляной кислоты из отработанного травильного раствора -  патент 2490374 (20.08.2013)
способ очистки поверхности полупроводниковых пластин и регенерации травильных растворов -  патент 2486287 (27.06.2013)
способ утилизации отработанных травильных растворов, содержащих сульфаты и хлориды железа (ii) -  патент 2428522 (10.09.2011)
способ регенерации молибдена и кислот из отработанного раствора травления молибденовых кернов в производстве электроламп и электровакуумных приборов и установка для его осуществления -  патент 2376396 (20.12.2009)
способ регенерационной очистки щелочных растворов меднения -  патент 2343225 (10.01.2009)
способ регенерации отработанных травильных кислотных растворов, образующихся при обработке титановых сплавов -  патент 2289638 (20.12.2006)
травильно-регенерационный процесс и способ регенерации отработанных травильных растворов -  патент 2232208 (10.07.2004)
способ травления стали -  патент 2181150 (10.04.2002)
электролитический способ регенерации травильных растворов на основе хлоридов железа -  патент 2180693 (20.03.2002)
Наверх