препарат, содержащий биологически активные действующие вещества

Классы МПК:A61K39/00 Лекарственные препараты, содержащие антигены или антитела
B82B3/00 Изготовление или обработка наноструктур
Автор(ы):, , ,
Патентообладатель(и):Федеральное бюджетное учреждение науки "Московский научно-исследовательский институт эпидемиологии и микробиологии им. Г.Н. Габричевского "Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (ФБУН МНИИЭМ им. Г.Н. Габричевского Роспотребнадзора) (RU)
Приоритеты:
подача заявки:
2009-01-15
публикация патента:

Изобретение относится к медицине, биотехнологии и фармацевтической промышленности, а именно к высокодисперсным препаратам, содержащим биологически активные действующие вещества в твердой фазе. Препарат характеризуется тем, что представляет собой дисперсионную систему с жидкой дисперсной фазой в микрокапельном состоянии, стабилизированной сухим высокодисперсным инертным гидрофобным разобщителем, который представляет собой диоксид кремния с наноразмерами частиц, содержащей действующее вещество в эффективном количестве, высушенной смешением с наполнителем-сорбентом до твердой дисперсной фазы, при следующем соотношении компонентов в системе, мас.%:

твердая дисперсная фаза 0,5-5,0
сухой высокодисперсный разобщитель 1,0-13,5
наполнитель-сорбент остальное до 100

Препарат обладает повышенной дисперсностью, обеспечивает повышение сохраняемости действующих веществ при хранении за счет стабилизации высокодисперсной твердой фазы. 3 табл., 1 ил., 15 пр.

препарат, содержащий биологически активные действующие вещества, патент № 2448730

Формула изобретения

Биологически активный препарат, характеризующийся тем, что представляет собой дисперсионную систему с жидкой дисперсной фазой в микрокапельном состоянии, стабилизированной сухим высокодисперсным инертным гидрофобным разобщителем, представляющим собой диоксид кремния с наноразмерами частиц, и содержащей действующее вещество в эффективном количестве, высушенной смешением с наполнителем-сорбентом до твердой дисперсной фазы, при следующем соотношении компонентов в системе, мас.%:

твердая дисперсная фаза 0,5-5,0
сухой высокодисперсный разобщитель 1,0-13,5
наполнитель-сорбент остальное до 100

Описание изобретения к патенту

Изобретение относится к медицине, биотехнологии и фармацевтической промышленности, а именно к высокодисперсным препаратам, содержащим биологически активные действующие вещества в твердой фазе.

Известен способ получения сухих бактериальных препаратов, в соответствии с которым сухой высокодисперсный порошок диоксида кремния добавляют к бульонной культуре микроорганизмов в соотношении 1:2 и перемешивают до получения однородной густоты массы, которую сушат в термостате при 27-32°C или на воздухе и затем диспергируют в течение двух часов до тонкодисперсного состояния (RU, патент 2104299 С1, C12N 1/04, 10.02.1998).

Препарат, полученный данным способом, не может обладать высокой дисперсностью, так как он содержит большое количество аэросила, измельчение которого не только не приводит к повышению его дисперсности, но, наоборот, значительно ухудшает ее, причем чем больше продолжительность измельчения, тем хуже дисперсность аэросила и, следовательно, препарата.

Известен комплексный бактериальный препарат, включающий носитель, представляющий собой сорбент, и клетки эубиотиков с компонентами питательной среды, иммобилизованные на указанном носителе, с биотитром 10 8-1010 KOE/мл, причем в качестве сорбента используют материал с антацидными свойствами, развитой мезопористой и макропористой структурой и объемом макропор не менее 0,01 см3/г при следующем количественном соотношении компонентов препарата, мас.%: клетки эубиотиков с компонентами питательной среды с титром 108-1010 KOE/мл - 1,0-50,0, носитель-сорбент - остальное до 100% (RU, патент 2118535 C1, A61K 35/74, C12N 11/14, 10.09.1998).

Известен сухой пробиотический препарат и способ его получения, предусматривающий получение жидкой биомассы путем смешения нативной культуры лактобактерий с белково-углеводным комплексом, контактное обезвоживание полученной жидкой биомассы влагоемкой ионообменной смолой КБ-4П-2 с размерами частиц от 1 до 800 мкм, предварительно обработанной смесью лактозы безводной и аэросила гидрофобного (RU, патент 2268926 С2, C12N 1/20, A23C 9/12, F26B 5/16, 10.03.2005).

Известные препараты не обеспечивают повышения дисперсности и сохраняемости действующих веществ за счет стабилизации высокодисперсной твердой фазы с биологически активными действующими веществами сухим высокодисперсным инертным гидрофобным разобщителем с наноразмерами частиц.

В основу изобретения положена задача повышения дисперсности препарата, содержащего биологически активные действующие вещества, находящиеся в твердой фазе в эффективном количестве, и повышение сохраняемости действующих веществ при хранении.

Задача решена тем, что препарат, содержащий биологически активные действующие вещества, представляет собой дисперсную систему с твердой дисперсной фазой, стабилизированной сухим высокодисперсным инертным гидрофобным разобщителем с наноразмерами частиц, при следующем соотношении компонентов, мас.%: твердая дисперсная фаза 0,5-5,0, сухой высокодисперсный разобщитель 1,0-13,5, наполнитель-сорбент остальное до 100. Препарат может содержать в качестве сухого высокодисперсного инертного гидрофобного разобщителя с наноразмерами частиц диоксид кремния.

В результате проведенных нами исследований впервые показано, что при сорбционно-контактном обезвоживании микрокапельных порошков, представляющих собой дисперсную систему с жидкой дисперсной фазой в микрокапельном состоянии, содержащей биологически активные действующие вещества, стабилизированной сухим высокодисперсным инертным гидрофобным разобщителем с наноразмерами частиц, стабилизирующий слой гидрофобного разобщителя вокруг каждой капли дисперсной фазы не разрушается, а в процессе удаления влаги с уменьшением размеров частиц дисперсной фазы формируется вокруг каждой высохшей частицы. В результате каждая частица твердой дисперсной фазы, содержащая биологически активные действующие вещества, оказывается окруженной стабилизирующим слоем сухого высокодисперсного гидрофобного разобщителя с наноразмерами частиц.

Стабилизирующий слой сухого высокодисперсного разобщителя вокруг каждой частицы предотвращает когезионное взаимодействие частиц твердой дисперсной фазы и соответствующее образование их агломератов, а за счет снижения скорости диффузии паров воды из окружающего пространства (Фиг.) предотвращает увлажнение твердой дисперсной фазы (2) по сравнению с незащищенной разобщителем твердой фазой (1), что обеспечивает сохранение высокой дисперсности и удовлетворительной активности заявляемого препарата на этапах его приготовления и хранения, а при пероральном применении снижает инактивирующее воздействие содержимого желудочно-кишечного тракта. В то же время сорбент-наполнитель защищает биологически активные действующие вещества, находящиеся в твердой дисперсной фазе, при аэрозольном применении: снижает инактивирующее воздействие факторов давления распыливающей среды.

Заявляемый препарат, содержащий биологически активные действующие вещества, является новым и в литературе не описан.

Техническим результатом заявляемого изобретения является повышение дисперсности препарата, содержащего биологически активные действующие вещества, находящиеся в твердой фазе в эффективном количестве, и повышение сохраняемости действующих веществ при хранении за счет стабилизации высокодисперсной твердой фазы с биологически активными действующими веществами сухим высокодисперсным инертным гидрофобным разобщителем с наноразмерами частиц.

Сущность изобретения поясняется на следующих примерах, свидетельствующих о повышении дисперсности препарата, содержащего биологически активные действующие вещества, находящиеся в твердой фазе в эффективном количестве, и повышение сохраняемости действующих веществ при хранении за счет стабилизации высокодисперсной твердой фазы с биологически активными действующими веществами сухим высокодисперсным инертным гидрофобным разобщителем с наноразмерами частиц.

Пример 1. Смешением микрокапельного порошка Francisella tularensis штамма № 33 НИИЭГ с содержанием жизнеспособных микроорганизмов 485×10 9 KOE/г с наполнителем-сорбентом КБ-4П-2 при соотношении жидкой фазы и сорбента 1:8 получен препарат туляремийной вакцины с содержанием жизнеспособных микроорганизмов 33×109 KOE/г с твердой дисперсной фазой, стабилизированной сухим высокодисперсным инертным гидрофобным разобщителем с наноразмерами частиц, при следующем соотношении компонентов в 1 г препарата: твердая дисперсная фаза 0,017, сухой высокодисперсный разобщитель 0,038, наполнитель-сорбент - остальное.

Проверка дисперсности полученного препарата, которую осуществляли на лазерном анализаторе зернистости «Malvern Instruments» 2600С по методике разработчика, показала, что содержание целевой фракции частиц (до 10 мкм) составило 31% и по сравнению с препаратом, полученным по известной технологии изготовления, увеличилось в 1,5 раза.

Результаты по хранению препарата представлены в примере 14.

Пример 2. Смешением микрокапельного порошка Yersinia pestis штамма EV НИИЭГ с содержанием жизнеспособных микроорганизмов 320×10 9 KOE/г с наполнителем-сорбентом КБ-4П-2 при соотношении жидкой фазы и сорбента 1:6 получен препарат чумной вакцины с содержанием жизнеспособных микроорганизмов 16×109 KOE/г с твердой дисперсной фазой, стабилизированной сухим высокодисперсным инертным гидрофобным разобщителем с наноразмерами частиц, при следующем соотношении компонентов в 1 г препарата: твердая дисперсная фаза 0,021, сухой высокодисперсный разобщитель 0,041, наполнитель-сорбент - остальное.

Проверка дисперсности полученного препарата, которую осуществляли, как описано в примере 1, показала, что содержание целевой фракции частиц (до 10 мкм) составило 42% и по сравнению с препаратом, полученным по известной технологии изготовления, увеличилось в 1,8 раза.

Результаты по хранению препарата представлены в примере 14.

Пример 3. Смешением микрокапельного порошка Serratia marcescens шт. ВКМ-851 с содержанием жизнеспособных микроорганизмов 126×10 9 KOE/г с наполнителем-сорбентом КБ-4П-2 при соотношении жидкой фазы и сорбента 1:4 получен препарат тест-культуры для проверки фильтров очистки воздуха с содержанием жизнеспособных микроорганизмов 8,5×109 KOE/г с твердой дисперсной фазой, стабилизированной сухим высокодисперсным инертным гидрофобным разобщителем с наноразмерами частиц, при следующем соотношении компонентов в 1 г препарата: твердая дисперсная фаза 0,029, сухой высокодисперсный разобщитель 0,057, наполнитель-сорбент - остальное.

Проверка дисперсности полученного препарата, которую осуществляли, как описано в примере 1, показала, что содержание целевой фракции частиц (до 10 мкм) составило 36% и по сравнению с препаратом, полученным по известной технологии изготовления, увеличилось в 1,2 раза.

Результаты по хранению препарата представлены в примере 14.

Пример 4. Смешением микрокапельного порошка Bifidobacterium bifidum шт. 1C с содержанием жизнеспособных микроорганизмов 1,4×10 9 KOE/г с наполнителем-сорбентом основной окисью алюминия при соотношении жидкой фазы и сорбента 1:6 получен пробиотический препарат с содержанием жизнеспособных микроорганизмов 1,4×10 8 KOE/г с твердой дисперсной фазой, стабилизированной сухим высокодисперсным инертным гидрофобным разобщителем с наноразмерами частиц, при следующем соотношении компонентов в 1 г препарата: твердая дисперсная фаза 0,02, сухой высокодисперсный разобщитель 0,04, наполнитель-сорбент - остальное.

Проверка дисперсности полученного препарата, которую осуществляли, как описано в примере 1, показала, что медианный диаметр частиц составил 24 мкм и по сравнению с препаратом, полученным по известной технологии изготовления, уменьшился в 2,3 раза.

Результаты по хранению препарата представлены в примере 14.

Пример 5. Смешением микрокапельного порошка Entherococcus faecium с содержанием жизнеспособных микроорганизмов 1,4×10 9 KOE/г с наполнителем-сорбентом КБ-4П-2 при соотношении жидкой фазы и сорбента 1:5 получен пробиотический препарат с содержанием жизнеспособных микроорганизмов 0,8×108 KOE/г с твердой дисперсной фазой, стабилизированной сухим высокодисперсным инертным гидрофобным разобщителем с наноразмерами частиц, при следующем соотношении компонентов в 1 г препарата: твердая дисперсная фаза 0,025, сухой высокодисперсный разобщитель 0,05, наполнитель-сорбент - остальное.

Проверка дисперсности полученного препарата, которую осуществляли, как описано в примере 1, показала, что медианный диаметр частиц составил 31 мкм и по сравнению с препаратом, полученным по известной технологии изготовления, уменьшился в 1,4 раза.

Результаты по хранению препарата представлены в примере 14.

Пример 6. Смешением микрокапельного порошка иммуноглобулинов IgG, IgA, IgM с противосальмонеллезной активностью 1:640 в титрах РПГА с наполнителем-сорбентом основной окисью алюминия при соотношении жидкой фазы и сорбента 1:6 получен иммунобиологический препарат с противосальмонеллезной активностью 1:160 в титрах РПГА с твердой дисперсной фазой, стабилизированной сухим высокодисперсным инертным гидрофобным разобщителем с наноразмерами частиц, при следующем соотношении компонентов в 1 г препарата: твердая дисперсная фаза 0,021, сухой высокодисперсный разобщитель 0,041, наполнитель-сорбент - остальное.

Проверка дисперсности полученного препарата, которую осуществляли, как описано в примере 1, показала, что медианный диаметр частиц составил 12 мкм и по сравнению с препаратом, полученным по известной технологии изготовления, уменьшился в 1,4 раза.

Результаты по хранению препарата представлены в примере 14.

Пример 7. Смешением микрокапельного порошка анестезина с концентрацией действующего вещества 200 мг/г с наполнителем-сорбентом окисью алюминия при соотношении жидкой фазы и сорбента 1:4 получен местноанестезирующий препарат с содержанием действующего вещества 40 мг/г с твердой дисперсной фазой, стабилизированной сухим высокодисперсным инертным гидрофобным разобщителем с наноразмерами частиц, при следующем соотношении компонентов в 1 г препарата: твердая дисперсная фаза 0,038, сухой высокодисперсный разобщитель 0,038, наполнитель-сорбент - остальное.

Проверка дисперсности полученного препарата, которую осуществляли, как описано в примере 1, показала, что медианный диаметр частиц составил 16 мкм и по сравнению с препаратом, полученным по известной технологии изготовления, уменьшился в 1,2 раза.

Инактивации действующего вещества в процессе хранения препарата в течение года не происходит.

Пример 8. Смешением микрокапельного порошка Bifidobacterium bifidum шт. 1C в смеси с иммуноглобулинами IgG, IgA, IgM с противосальмонеллезной активностью 1:640 в титрах РПГА и содержанием жизнеспособных микроорганизмов 1,3×109 KOE/г с наполнителем-сорбентом окисью алюминия при соотношении жидкой фазы и сорбента 1:6 получен комплексный иммунобиологический препарат с противосальмонеллезной активностью 1:160 в титрах РПГА и содержанием жизнеспособных микроорганизмов 1×108 KOE/г с твердой дисперсной фазой, стабилизированной сухим высокодисперсным инертным гидрофобным разобщителем с наноразмерами частиц, при следующем соотношении компонентов в 1 г препарата: твердая дисперсная фаза 0,02, сухой высокодисперсный разобщитель 0,04, наполнитель-сорбент - остальное.

Проверка дисперсности полученного препарата, которую осуществляли, как описано в примере 1, показала, что медианный диаметр частиц готового препарата составил 25 мкм (препарата по известной технологии изготовления не существует).

Пример 9. Смешением микрокапельного порошка натрия хлорида с концентрацией действующего вещества 100 мг/г с наполнителем-сорбентом КБ-4П-2 при соотношении жидкой фазы и сорбента 1:3 получен аэрозольный препарат с содержанием действующего вещества 30 мг/г с твердой дисперсной фазой, стабилизированной сухим высокодисперсным инертным гидрофобным разобщителем с наноразмерами частиц, при следующем соотношении компонентов в 1 г препарата: твердая дисперсная фаза 0,029, сухой высокодисперсный разобщитель 0,024, наполнитель-сорбент - остальное.

Проверка дисперсности полученного препарата, которую осуществляли, как описано в примере 1, показала, что медианный диаметр частиц составил 8 мкм и по сравнению с препаратом, полученным по известной технологии изготовления, уменьшился в 1,25 раза.

Инактивации действующего вещества в процессе хранения препарата в течение года не происходит.

Пример 10. Смешением микрокапельного порошка иммуноглобулинов IgG, IgA, IgM в смеси с антибиотиком офлоксацином с противосальмонеллезной активностью 1:1280 в титрах РПГА и концентрацией антибиотика 100 мг/г с наполнителем-сорбентом окисью алюминия при соотношении жидкой фазы и сорбента 1:5 получен комбинированный иммунобиологическо-антимикробный препарат с противосальмонеллезной активностью 1:320 в титрах РПГА и концентрацией антибиотика 20 мг/г с твердой дисперсной фазой, стабилизированной сухим высокодисперсным инертным гидрофобным разобщителем с наноразмерами частиц, при следующем соотношении компонентов в 1 г препарата: твердая дисперсная фаза 0,039, сухой высокодисперсный разобщитель 0,032, наполнитель-сорбент - остальное.

Проверка дисперсности полученного препарата, которую осуществляли, как описано в примере 1, показала, что медианный диаметр частиц готового препарата составил 30 мкм (препарата по известной технологии изготовления не существует).

Пример 11. Смешением микрокапельного порошка вакцинного штамма La-Sota вируса болезни Ньюкасла (ВБН) с содержанием жизнеспособных вирусов 10,4 lg ЭИД50/г с наполнителем-сорбентом КБ-4П-2 при соотношении жидкой фазы и сорбента 1:4 получен препарат вирусной вакцины с содержанием жизнеспособных вирусов 10,0 lg ЭИД 50/г с твердой дисперсной фазой, стабилизированной сухим высокодисперсным инертным гидрофобным разобщителем с наноразмерами частиц, при следующем соотношении компонентов в 1 г препарата: твердая дисперсная фаза 0,029, сухой высокодисперсный разобщитель 0,057, наполнитель-сорбент - остальное.

Проверка дисперсности полученного препарата, которую осуществляли, как описано в примере 1, показала, что содержание целевой фракции частиц (до 10 мкм) составило 77% и по сравнению с препаратом, полученным по известной технологии изготовления, увеличилось в 1,1 раза.

Результаты по хранению препарата представлены в примере 14.

Пример 12. Смешением микрокапельного порошка парацетамола с концентрацией действующего вещества 175 мг/г с наполнителем-сорбентом окисью алюминия при соотношении жидкой фазы и сорбента 1:4 получен анальгетический препарат с содержанием действующего вещества 40 мг/г с твердой дисперсной фазой, стабилизированной сухим высокодисперсным инертным гидрофобным разобщителем с наноразмерами частиц, при следующем соотношении компонентов в 1 г препарата: твердая дисперсная фаза 0,04, сухой высокодисперсный разобщитель 0,038, наполнитель-сорбент - остальное.

Проверка дисперсности полученного препарата, которую осуществляли, как описано в примере 1, показала, что медианный диаметр частиц составил 4,3 мкм и по сравнению с препаратом, полученным по известной технологии изготовления, уменьшился в 3,9 раза, а содержание фракции до 5 мкм составило 56%, то есть увеличилось в 7,3 раза.

Инактивации действующего вещества в процессе хранения препарата в течение года не происходит.

Пример 13. Сравнивали аэробиологические характеристики аэрозолей сухих препаратов, приготовленных по известной технологии, и препаратов с твердой дисперсной фазой (заявляемых) на примере культур Serratia marcescens шт. ВКМ-851, Francisella tularensis штамма № 33 НИИЭГ, Yersinia pestis штамма EV НИИЭГ. Микрокапельные порошки получали в электромагнитном диспергаторе в непрерывном режиме с использованием суспензий культур микроорганизмов глубинного культивирования с лактозной защитной средой. Препараты с твердой дисперсной фазой получали сорбционно-контактным обезвоживанием соответствующих микрокапельных порошков. Материалы переводили в аэрозоль при температуре в аэрозольной камере 20-22°C и относительной влажности воздуха 50-70% импульсным методом. Отбор проб аэрозолей осуществляли через равные промежутки времени в течение 30 мин витания аэрозоля.

Скорость убывания биологической концентрации аэрозоля характеризовали логарифмическим коэффициентом инактивации (ЛКИ), вычисляемым по формуле

ЛКИ=(lgCб1-lgCб2)/t,

где Сб1 - концентрация живых клеток в аэрозоле в начале опыта, KOE/л;

Сб2 - концентрация живых клеток в аэрозоле в конце опыта, KOE/л;

t - продолжительность опыта, мин.

Коэффициент использования по биокомпоненту (КИб, %), характеризующий степень перевода биопрепарата в аэрозоль, рассчитывали по формуле

КИб =100Сб1 V/QБК,

где Сб1 - концентрация живых клеток в аэрозоле в начале опыта, KOE/л;

V - объем аэрозольной камеры, л;

Q - масса аэрозолируемого препарата, г (мл);

БК - концентрация клеток в препарате, KOE/г.

Результаты представлены в таблице.

Распыливаемый материал Величины параметров
Количество клеток перед распылом, KOE/г Количество клеток в аэрозоле, KOE/г Степень перевода в аэрозоль, % Логарифмический коэффициент инактивации, 1/мин
Сухой препарат (известный) Serratia marcescens 3,8×109 4,6×104 1,40,095±0,074
Francisella tularensis8,5×10 915,0×10 42,1 0,113±0,088
Yersinia pestis 11,0×109 17,3×10 41,9 0,107±0,091
С твердой дисперсной фазой (заявляемый) Serratia marcescens 8,6×109 41,7×104 5,80,077±0,053
Francisella tularensis33,0×10 912,1×10 54,5 0,082±0,064
Yersinia pestis 17,0×109 53,4×10 43,8 0,089±0,069

Как следует из анализа данных таблицы, степень перевода микроорганизмов в аэрозоль при распыливании препаратов с твердой дисперсной фазой выше, чем препаратов, приготовленных по известной технологии. При этом заявляемые препараты с твердой дисперсной фазой характеризуются большей выживаемостью бактериальных клеток в аэрозоле при длительном витании аэрозоля в воздухе, что достигается за счет защитного эффекта стабилизирующего слоя высокодисперсного гидрофобного разобщителя с наноразмерами частиц.

Пример 14. Сохраняемость биологически активных действующих веществ в препаратах, приготовленных по известной технологии изготовления, и в заявляемых препаратах оценивали при хранении в течение года при температуре 2-8°C и относительной влажности в помещении 55%. Результаты представлены в таблице.

Препарат на основе Биологическая активность Остаточная влажность, %
до храненияпосле хранениядо хранения после хранения
Francisella tularensisизвестный 8,5×109 KOE/г4,3×10 9 KOE/г8,7 8,6
заявляемый33,0×10 9 KOE/г24,1×10 9 KOE/г8,0 8,1
Yersinia pestis известный11,0×10 9 KOE/г9,5×10 9 KOE/г11,4 11,4
заявляемый17,0×10 9 KOE/г15,7×10 9 KOE/г11,2 11,1
Serratia marcescens известный3,8×10 9 KOE/г1,9×10 9 KOE/г16,2 16,4
заявляемый8,6×10 9 KOE/г6,4×10 9 KOE/г15,9 15,7
Bifidobacterium bifidum известный0,7×10 8 KOE/г0,6×10 8 KOE/г11,1 11,3
заявляемый1,5×10 8 KOE/г1,6×10 8 KOE/г11,2 11,4
Entherococcus faecium известный0,4×10 8 KOE/г0,3×10 8 KOE/г12,7 12,8
заявляемый0,8×10 8 KOE/г0,6×10 8 KOE/г12,5 12,5
иммуноглобулинов IgG, IgA, IgM известный1:80 1:80 11,011,4
заявляемый 1:1601:160 10,8 11,4
вируса болезни Ньюкасла известный9,5 lg ЭИД50 9,2 lg ЭИД50 16,016,1
заявляемый 10,0 lg ЭИД50 9,8 lg ЭИД50 15,515,4

Анализ данных таблицы показывает, что заявляемые препараты после хранения в указанных условиях обладают большей биологической активностью по сравнению с препаратами, приготовленными по известной технологии, что свидетельствует о повышении сохраняемости биологически активных действующих веществ в заявляемых препаратах.

Пример 15. Сравнивали устойчивость к инактивирующим факторам желудочно-кишечного тракта (ЖКТ) сухих препаратов, приготовленных по известной технологии, и препаратов с твердой дисперсной фазой (заявляемых) на примере комплексного иммуноглобулинового препарата (КИП), содержащего три основных класса (IgG, IgM, IgA) сывороточных антител. Воздействие факторов ЖКТ моделировали последовательным выдерживанием с постоянным перемешиванием в течение 2 ч сравниваемых препаратов с 0,1 N HCl и 2% NaHCO3 [ГФ XI вып.2, стр.156].

Результаты представлены в таблице.

Препарат Характеристики препарата после воздействия
0,1 N HCl 2% NaHCO3
концентрация белка, мг/г антисальмонеллезная активность, титр РПГА концентрация белка, мг/г антисальмонеллезная активность, титр РПГА
известный22 1:80 131:40
заявляемый 401:320 361:160

Как видно из данных таблицы, заявляемый препарат обладает большей устойчивостью к повреждающим факторам ЖКТ по сравнению с препаратом, приготовленным по известной технологии, что обусловливается защитным действием слоя гидрофобного разобщителя, окружающего сухие частицы биокомпонента.

Класс A61K39/00 Лекарственные препараты, содержащие антигены или антитела

лекарственное средство для лечения патологического синдрома и способ лечения острых и хронических заболеваний дыхательноый системы и синдрома кашля -  патент 2529783 (27.09.2014)
холодоадаптированный штамм вируса гриппа в-в/виктория/2/63/87, предназначенный в качестве штамма-донора аттенуации для получения реассортантов холодоадаптированных штаммов для живой гриппозной вакцины -  патент 2529772 (27.09.2014)
лечение опухолей с помощью антитела к vegf -  патент 2528884 (20.09.2014)
способ получения концентрата микробных клеток для получения живой туляремийной вакцины -  патент 2528878 (20.09.2014)
вакцины и компоненты вакцин для подавления микробных клеток -  патент 2528854 (20.09.2014)
рекомбинантная вакцина на основе инактивированного вирусного вектора -  патент 2528750 (20.09.2014)
антитела, узнающие углеводсодержащий эпитоп на cd43 и сеа, экспрессируемых на раковых клетках и способы их применения -  патент 2528738 (20.09.2014)
антитела против альфа5-бета 1 и их применение -  патент 2528736 (20.09.2014)
антагонисты pcsk9 -  патент 2528735 (20.09.2014)
способ лечения больных с синдромом диспепсии в сочетании с избыточной массой тела -  патент 2528641 (20.09.2014)

Класс B82B3/00 Изготовление или обработка наноструктур

Наверх