способ измерения интенсивности нейтронного потока

Классы МПК:G21C17/00 Контроль; проверка
Автор(ы):
Патентообладатель(и):Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" (RU)
Приоритеты:
подача заявки:
2010-12-01
публикация патента:

Изобретение относится к способам экспериментального определения физических характеристик нейтронных источников и ядерных реакторов и может быть использовано при оценке таких параметров подкритического ядерного реактора.

В способе измерения интенсивности нейтронного потока в зону измерений вводят источник заряженных частиц, возникающих под действием нейтронного излучения, и поглотитель заряженных частиц, установленные с возможностью изменения взаимного положения и соприкосновения, фиксируют силу взаимного электрического притяжения источника и поглотителя и/или изменение положения, и/или частоту соприкосновения источника и поглотителя заряженных частиц, определяемые интенсивностью нейтронного потока.

Техническим результатом изобретения является измерение нейтронных потоков, проведение измерений в сложных радиационных условиях и в труднодоступных местах, сокращение времени измерений, упрощение технологии измерений, упрощение технической реализации. 1 ил. способ измерения интенсивности нейтронного потока, патент № 2447520

способ измерения интенсивности нейтронного потока, патент № 2447520

Формула изобретения

Способ измерения интенсивности нейтронного потока, характеризующийся введением в зону измерений источника заряженных частиц, возникающих под действием нейтронного излучения, и поглотителя заряженных частиц, установленных с возможностью изменения взаимного положения и соприкосновения, фиксацией силы взаимного электрического притяжения источника и поглотителя и/или взаимного положения, и/или частоты соприкосновения, определяемых интенсивностью нейтронного потока.

Описание изобретения к патенту

Изобретение относится к способам экспериментального определения физических характеристик нейтронных источников и ядерных энергетических реакторов и может быть использовано при оценке таких важных параметров подкритического ядерного реактора, как эффективный коэффициент размножения, реактивность.

Измерения реактивности были и остаются основными измерениями, выполняемыми как на критических сборках, так и на энергетических реакторах. Это связано с тем, что изменение нейтронной мощности реактора во времени определяется его реактивностью. Поэтому для обеспечения ядерной безопасности необходим непрерывный контроль реактивности ядерного реактора на остановках, в том числе в процессе перегрузки топлива и при выполнении регламентных ремонтных работ.

Известен способ определения интенсивности источника нейтронов ядерной установки, заключающийся в том, что измеряют скорость счета от ядерной установки детектором нейтронов и рассчитывают эффективную интенсивность источника нейтронов.

Измерение скорости счета ведут при наличии в ядерной установке делящегося вещества, а скорость счета измеряют во времени с интервалом дискретности не менее 1 с до, во время и после введения стержней регулирования в установку, при этом время введения стержней не превышает 5 с, суммарная эффективность вводимых стержней больше 1%.

Суммарное время измерения скорости счета не менее 300 с, а время измерения скорости счета до начала введения стержней выбрано в интервале 10-20 с (патент РФ № 2231145, МПК G21C 17/104, 2004). Способ позволяет определять эффективную интенсивность источника нейтронов заглушенного ядерного реактора, однако его реализация связана с технологическими и техническими проблемами, а именно с необходимостью извлечения с последующего ввода в активную зону значительной части регулирующих стержней для создания возмущения нейтронного потока.

Известен способ определения эффективной интенсивности источника нейтронов заглушенного ядерного реактора, содержащего облученное ядерное топливо, включающий перемещение в активной зоне стержней поглотителей или иных локальных источников возмущения, определение с помощью детекторов нейтронов отклика нейтронного поля на эти перемещения и расчет искомой величины, отличающийся тем, что дополнительно измеряют интенсивность гамма-излучения, а расчет эффективной интенсивности источника нейтронов выполняют по соотношению Qэф(t)способ измерения интенсивности нейтронного потока, патент № 2447520 kY·Yd(t), где Yd (t) - интенсивность гамма-излучения; kY - коэффициент, определенный в результате калибровочного эксперимента. В качестве детекторов нейтронов и гамма-излучения используют камеры деления (патент РФ № 2302676, МПК G21C 17/104, 2007 г.). Реализация и этого способа требует значительного времени и связана с технологическими и техническими трудностями.

Техническим результатом изобретения является измерение нейтронных потоков, проведение измерений в сложных радиационных условиях и в труднодоступных местах, сокращение времени измерений, упрощение технологии измерений, упрощение технической реализации.

Технический результат достигается тем, что в способе измерения интенсивности нейтронного потока в зону измерений вводят источник заряженных частиц, возникающих под действием нейтронного излучения, и поглотитель заряженных частиц, установленных с возможностью изменения взаимного положения и соприкосновения, фиксацией силы взаимного электрического притяжения источника и поглотителя и/или взаимного положения, и/или частоты соприкосновения, определяемых интенсивностью нейтронного потока.

Сущность изобретения поясняется на чертеже, где: 1 - источник заряженных частиц, возникающих под действием нейтронного излучения, 2 - поглотитель заряженных частиц, 3 - упруго деформируемый элемент.

Нейтроны, попадающие в материал источника заряженных частиц 1, вызывают ядерную реакцию и излучение заряженных частиц. Заряженные частицы вылетают из материала источника 1 во все стороны изотропно, часть из них выходит и в сторону поглотителя заряженных частиц 2, закрепленного на упруго деформируемом элементе 3.

Источник заряженных частиц 1 и поглотитель заряженных частиц 2 набирают заряд противоположных знаков. Между ними возникает сила Кулоновского притяжения, которая растет по мере увеличения заряда Q, пропорционального числу нейтронов, попавших на источник заряженных частиц 1 за время регистрации. Сила Кулоновского притяжения воздействует на упруго деформируемый элемент 3, деформируя его: растягивая и/или изгибая, и/или отклоняя, и/или скручивая и приводя к изменению взаимного положения источника заряженных частиц 1 и поглотителя заряженных частиц 2. Уменьшение расстояния между ними тем больше, чем больше Кулоновское притяжение, которое пропорционально квадрату накопленного заряда Q2 . Увеличение заряда, деформация упруго деформируемого элемента 3, уменьшение расстояния между источником заряженных частиц 1 и поглотителем заряженных частиц 2 происходит до тех пор, пока они не приходят в контакт. При контакте происходит компенсация накопленных зарядов. Сила Кулоновского притяжения исчезает. Упруго деформированный элемент 3 возвращает источник заряженных частиц 1 и поглотитель заряженных частиц 2 в их исходные положения. И процесс повторяется. Для предотвращения электризации молекул воздуха, нарушающей процесс заряда, источник заряженных частиц 1 и поглотитель заряженных частиц 2 размещают в откачиваемом объеме.

При упругой деформации величина деформации и сила, вызывающая эту деформацию, связаны законом Гука. Силой, вызывающей упругую деформацию упруго деформируемого элемента 3, является сила Кулоновского притяжения. Для ее измерения в качестве одного из упруго деформируемых элементов 3 применяют пьезодатчик. Пьезодатчики широко используют для оценки различных физических величин, в том числе для измерения давления. Величина давления, обусловленного силой Кулоновского притяжения, определяется отношением (1):

способ измерения интенсивности нейтронного потока, патент № 2447520 , где:

s - площадь контакта пьезокристалла пьезодатчика с излучателем заряженных частиц 1 или поглотителем заряженных частиц 2, F - сила, действующая на пьезокристалл, равная силе Кулоновского притяжения и определена выражением (2)

способ измерения интенсивности нейтронного потока, патент № 2447520 где:

Q - накопленный заряд, способ измерения интенсивности нейтронного потока, патент № 2447520 0 - электрическая постоянная, S - площадь наименьшего по площади элемента: излучателя заряженных частиц 1 или поглотителя заряженных частиц 2. Из (1) и (2) следует, что давление Р пропорционально квадрату накопленного заряда, который пропорционален квадрату плотности нейтронного потока и времени измерений. Оценка Р, выполненная при Q=1010 е-, S=l см2 и s=l мм3, дает значение Р более 1 кПа, находящееся в диапазоне измеряемых величин давлений с помощью пьезодатчиков. Для источника заряженных частиц 1 использованы вещества, имеющие большие сечения ядерных реакций, идущих с излучением заряженных частиц. При регистрации тепловых нейтронов - это гадолиний и его изотопы Gd-155 и Gd-157, которые обладают максимальным макроскопическим сечением поглощения нейтронов среди существующих материалов. При поглощении нейтрона в гадолинии излучаются конверсионные электроны в диапазоне энергий от 29,2 кэВ до 180 кэВ. Вероятность поглощения нейтрона с рождением конверсионного электрона составляет 0,725. Средняя энергия электронов составляет около 65,9 кэВ. Средний пробег электронов составляет около 17 мкм. При регистрации быстрых нейтронов - это, прежде всего, кальций, бор-11, углерод-12. Ядра этих элементов при захвате быстрого нейтрона излучают протоны и альфа частицы. Поглотитель заряженных частиц 2 выполнен из материала с хорошей электропроводностью и минимальным коэффициентом отражения (альбедо) для падающих на него заряженных частиц, электрически изолирован от источника заряженных частиц 1. В случае поглощения электронов лучшим материалом является графит, обладающий достаточно высокой электропроводностью и наименьшим альбедо по сравнению с другими проводящими материалами, включая медь и серебро. Электрическую изоляцию устанавливают: в месте крепления поглотителя заряженных частиц 2 к деформируемому элементу 3 и/или в месте крепления деформируемого элемента 3. Изменение пространственного положения источника заряженных частиц 1 и/или поглотителя заряженных частиц 2 при облучении нейтронами регистрируют оптическими средствами; по изменению положения (линейного или углового) и/или величине деформации отражателя, и/или поглотителя света. Одним из примеров оптического средства является оптическая щель, каждая из половин которой механически связана, соответственно, с источником заряженных частиц 1 и поглотителем заряженных частиц 2. Уменьшение расстояния между источником заряженных частиц 1 и поглотителем заряженных частиц 2 приводит к уменьшению зазора щели и интенсивности проходящего через нее светового пучка обратно пропорционально размеру зазора. Изменение направления отраженного светового луча от отражателя и/или интенсивности прошедшего через поглотитель заряженных частиц 2 светового луча фиксируют с помощью фотоприемника, например фотодиодной линейки или фотодиода. Ввод первичного и вывод отраженного световых лучей можно производить волоконными световодами. Частоту, с которой излучатель заряженных частиц 1 и поглотитель заряженных частиц 2 приходят в контакт, фиксируют подсоединенными к ним электрическими проводниками и регистратором.

Расчет показывает, что при использовании в качестве источника заряженных частиц 1 гадолиния толщиной несколько микрометров, а в качестве упруго деформируемого элемента 3 бронзовой пластинки со свободной длиной 1 см, шириной 1 мм, толщиной 10 мкм, находящейся на расстоянии 1 мкм от источника заряженных частиц 1, частота срабатывания в 1 Гц достигается при плотности потока тепловых нейтронов величиной около 1-108 с -1·см-2. При использования кальция эта частота срабатываний достигается при плотности потока быстрых 14 МэВ нейтронов на три порядка выше. Чувствительность измерений зависит от толщины и площади слоя материала источника заряженных частиц 1, площади поглотителя 2 и степени жесткости упруго деформируемого элемента 3, а также от величины первоначального зазора между излучателем заряженных частиц 1 и поглотителем заряженных частиц 2. Величина зазора между излучателем заряженных частиц 1 и поглотителем заряженных частиц 2, а также жесткость упруго деформируемого элемента 3 изменяют во время измерений, с помощью дополнительных пьезоэлементов. На чувствительность способа влияют: величина заряда излучаемых частиц, период полураспада продуктов реакций, пробег заряженных частиц в материале источника заряженных частиц 1, парциальные сечения ядерных реакций с их рождением. Под действием быстрых нейтронов обычно происходит несколько ядерных реакций с излучением различных заряженных частиц. Вклад в накопленный заряд источника заряженных частиц 1 продуктов реакции определяется периодом полураспада и тем меньше, чем больше период полураспада. Пробег излучаемых частиц в источнике заряженных частиц 1 зависит от их энергии, заряда, а также заряда его ядер материала. Сечения ядерных реакций для 14 МэВ нейтронов, нейтронов спектра деления и тепловых нейтронов для различных химических элементов существенно различаются. Кроме того, для быстрых нейтронов реакции с излучением заряженных частиц в большинстве случаев являются пороговыми. По этой причине предлагаемый способ позволяет раздельно регистрировать 14 МэВ нейтроны на фоне нейтронов спектра деления и тепловых нейтронов, а тепловые нейтроны на фоне быстрых нейтронов любого спектра.

Класс G21C17/00 Контроль; проверка

способ измерения нейтронной мощности ядерного реактора в абсолютных единицах -  патент 2528401 (20.09.2014)
имитатор тепловыделяющего элемента ядерного реактора -  патент 2526856 (27.08.2014)
ампульное устройство для реакторных исследований -  патент 2526328 (20.08.2014)
устройство для испытания материалов в ядерном реакторе -  патент 2524683 (10.08.2014)
имитатор тепловыделяющего элемента ядерного реактора -  патент 2523423 (20.07.2014)
устройство онлайнового измерения потока быстрых и эпитермических нейтронов -  патент 2516854 (20.05.2014)
ампульное облучательное устройство -  патент 2515516 (10.05.2014)
прибор для ядерной энергетической установки -  патент 2514858 (10.05.2014)
способ неразрушающего контроля технического состояния графитовой кладки уран-графитовых ядерных реакторов -  патент 2510682 (10.04.2014)
способ проверки работы активной зоны контрольно-измерительными приборами активной зоны -  патент 2508571 (27.02.2014)
Наверх