способ приготовления высокостабильного чувствительного элемента сенсора на пероксид водорода

Классы МПК:G01N27/26 путем определения электрохимических параметров; путем электролиза или электрофореза
Автор(ы):, , ,
Патентообладатель(и):Российская Федерация, от имени которой выступает Федеральное агентство по науке и инновациям (RU),
Общество с ограниченной ответственностью "РУСЕНС" (RU)
Приоритеты:
подача заявки:
2009-11-30
публикация патента:

Изобретение относится к способу приготовления высокостабильного чувствительного элемента сенсора на пероксид водорода и может быть использовано в аналитической химии, в клинической диагностике, для контроля состояния окружающей среды, в различных областях промышленности. Способ заключается в том, что берлинскую лазурь стабилизируют гексацианоферратом никеля. При этом осуществляют последовательное осаждение берлинской лазури и гексацианоферрата никеля. Способ позволяет создать сенсоры с высокой чувствительностью, селективностью, хорошей воспроизводимостью токового сигнала, т.е. с высокой стабильностью. 1 з.п. ф-лы, 2 ил.

способ приготовления высокостабильного чувствительного элемента   сенсора на пероксид водорода, патент № 2442976 способ приготовления высокостабильного чувствительного элемента   сенсора на пероксид водорода, патент № 2442976

Формула изобретения

1. Способ приготовления чувствительного элемента сенсора на пероксид водорода, отличающийся тем, что, с целью увеличения стабильности чувствительного элемента, берлинскую лазурь стабилизируют гексацианоферратом никеля.

2. Способ приготовления чувствительного элемента по п.1, отличающийся тем, что для увеличения стабильности чувствительного элемента используют последовательное осаждение берлинской лазури и гексацианоферрата никеля.

Описание изобретения к патенту

Изобретение относится к способу приготовления чувствительного элемента сенсора на пероксид водорода. В частности, к способу стабилизации берлинской лазури, являющейся электрокатализатором восстановления пероксида водорода, гексацианоферратом никеля.

Определение пероксида водорода является важной аналитической задачей для клинической диагностики, контроля состояния окружающей среды и в различных областях промышленности. Его содержание необходимо определять в грунтовых водах и атмосферных осадках, куда он попадает в результате выбросов промышленности и атомных станций, а также в пищевой промышленности.

На сегодняшний день наиболее эффективным чувствительным элементом для определения пероксида водорода является берлинская лазурь - гексацианоферрат (II) железа (III) [1]. Инертные электроды (платина, золото, стеклоуглерод), модифицированные берлинской лазурью, находят широкое применение при конструировании сенсоров на пероксид водорода и биосенсоров, содержащих иммобилизованные оксидазы в качестве биочувствительного элемента [1].

При взаимодействии пленки берлинской лазури и определяемого пероксида водорода происходит разложение последнего до гидроксид-иона OH-. При малых концентрациях пероксида водорода его влияние на свойства сенсора незначительно. Однако при проведении непрерывных измерений может образовываться значительное количество гидроксид-ионов, которое приводит к постепенному растворению покрытия берлинской лазури с поверхности электрода. Для проведения непрерывного мониторинга содержания пероксида водорода необходимы сенсоры, которые наряду с высокой чувствительностью и селективностью обладают хорошей воспроизводимостью токового сигнала, то есть имеют высокую стабильность.

Сущность изобретения состоит в следующем:

- предложен способ совместного осаждения чувствительного элемента (берлинской лазури) и стабилизатора (гексацианоферрата никеля) на поверхность электрода для изготовления высокостабильного сенсора на пероксид водорода;

- предложен способ последовательного осаждения чувствительного элемента (берлинской лазури) и стабилизатора (гексацианоферрата никеля) на поверхность электрода для изготовления высокостабильного сенсора на пероксид водорода.

Пример 1

Электрохимический способ совместного осаждения берлинской лазури и гексацианоферрата никеля на поверхность электрода

Совместное электроосаждение гексацианоферрата никеля и берлинской лазури проводили в потенциодинамическом режиме, при развертке подаваемого на рабочий электрод потенциала от 0 до +0.75 В, скорость развертки потенциала составляла 50-100 мВ/с, в течение 5-20 циклов. Синтез проводили в трехэлектродной ячейке, содержащей рабочий электрод, хлоридсеребряный электрод сравнения и стеклоуглеродный вспомогательный электрод. Ростовой раствор содержал 1 мМ K 3[Fe(CN)6] и x мМ NiCl2 и (1-х) мМ FeCl3 (x от 0,1 до 0,9) в фоновом электролите состава 0.1 М KCl, 0.1 М HCl.

Затем электроды циклировали в диапазоне потенциалов от 0 до +1 В в фоновом электролите состава 0.1 М KCl, 0.1 М HCl при скорости развертки потенциала 40 мВ/сек в течение 20 циклов. После чего электроды подвергали термической обработке при 100°C в течение 1 часа и охлаждали до комнатной температуры.

В фигуре 1 представлено сравнение зависимостей тока от времени в постоянном потоке 1·10 -3 М H2O2 для сенсоров с чувствительными элементами на основе берлинской лазури и берлинской лазури, стабилизированной гексацианоферратом никеля путем совместного осаждения из растворов солей. Для смешанного покрытия удалось понизить константу инактивации каталитического покрытия почти на порядок величины - она составила 5·10-3 мин-1 по сравнению с 45·10 -3 мин-1 для берлинской лазури. В режиме постоянного потока пероксида водорода к поверхности электрода за 20 минут сенсор со стабилизированным чувствительным элементом теряет менее 10% величины начального сигнала, в то время как сенсор на основе берлинской лазури теряет более 35% величины сигнала за 10 минут.

Пример 2

Электрохимический способ последовательного осаждения берлинской лазури и гексацианоферрата никеля на поверхность электрода

Последовательный электросинтез каталитических слоев берлинской лазури и стабилизирующих слоев гексацианоферрата никеля проводили в различных трехэлектродных ячейках. Одна из ячеек содержала ростовой раствор для синтеза гексацианоферрата никеля: 1 мМ K3[Fe(CH)6 ] и 1 мМ NiCl2 в фоновом электролите состава 0.1 М KCl, 0.1 М HCl. Вторая ячейка содержала раствор для электросинтеза берлинской лазури, концентрации солей изменяли в пределах 0,5-4 мМ как для FeCl3, так и для K3[Fe(CH) 6]. Электрохимическое осаждение покрытия гексацианоферрата никеля проводили в потенциодинамическом режиме, при развертке потенциала от 0 до +0.75 В, скорость развертки потенциала составляла 50-100 мВ/с, в течение 1-5 циклов. Электроосаждение берлинской лазури проводили в потенциодинамическом режиме, при развертке потенциала от +0,4 до +0.75 В, скорость развертки потенциала составляла 10-20 мВ/с, в течение 1-5 циклов. После осаждения одного из соединений электрод ополаскивали дистиллированной водой и переносили в другую ячейку для последующего нанесения другого соединения. Общее число слоев в чувствительном элементе сенсора составляло от 2 до 20.

Стадии обработки электродов после окончания электросинтеза аналогичны описанным в примере 1.

Из фигуры 2 видно, что для сенсора с чувствительным элементом на основе покрытия берлинской лазури, стабилизированной гексацианоферратом никеля путем последовательного электроосаждения, сигнал стабилен в течение 1 часа и более, в то время как в случае сенсора с нестабилизированным чувствительным элементом за 10 минут теряется более 35% начальной величины сигнала. Удалось понизить константу инактивации каталитического покрытия берлинской лазури, стабилизированной гексацианоферратом никеля путем последовательного электроосаждения, на четыре порядка величины: для него константа составила 5·10-6 мин-1, в то время как для берлинской лазури - 4,5-10·-2 мин -1.

Все характеристики сенсоров получены из экспериментов, проводившихся в проточно-инжекционном режиме тестирования в фосфатном буфере (0.1 М KCl, 0.1 М KH2 PO4, рН=6,0). Скорость потока раствора буфера - 0.25 мл/мин. Рабочий потенциал 0 В отн. Ag/AgCl/1 M KCl.

Литература

1. Arkady A. Karyakin, Prussian Blue and Its Analogues: Electrochemistry and Analytical Applications. Electroanalysis (2001), 13, 813-19.

Класс G01N27/26 путем определения электрохимических параметров; путем электролиза или электрофореза

реагенты и способы обнаружения аналитов -  патент 2518310 (10.06.2014)
способ определения индолил-уксусной кислоты методом капиллярного электрофореза -  патент 2517219 (27.05.2014)
способ определения цинка -  патент 2508539 (27.02.2014)
способ количественного определения никеля методом инверсионной вольтамперометрии на органо-модифицированном электроде -  патент 2504761 (20.01.2014)
способ идентификации металлов и сплавов и устройство для его осуществления -  патент 2501003 (10.12.2013)
способ определения общего фосфора методом капиллярного электрофореза -  патент 2499989 (27.11.2013)
способ и прибор идентификации металла или сплава -  патент 2499253 (20.11.2013)
способ измерения редокс потенциала биологических сред -  патент 2497107 (27.10.2013)
способ определения глюкозы, сахарозы, фруктозы -  патент 2492458 (10.09.2013)
способ определения коэффициента диффузии растворителей в массивных изделиях из капиллярно-пористых материалов -  патент 2492457 (10.09.2013)
Наверх