ванадиевый катализатор окисления хлористого водорода в хлор молекулярным кислородом

Классы МПК:C01B7/04 получение хлора из хлористого водорода
B01J23/22 ванадий
B01J23/04 щелочные металлы
B01J27/16 содержащие кислород
B01J27/055 с щелочными металлами, медью, золотом или серебром
Автор(ы):,
Патентообладатель(и):Учреждение Академии Наук Институт химии и химической технологии Сибирского отделения РАН (ИХХТ СО РАН) (RU)
Приоритеты:
подача заявки:
2010-08-20
публикация патента:

Изобретение может быть использовано при получении хлорорганических соединений для регенерации хлора из абгазного хлористого водорода. В качестве компонентов ванадиевого катализатора окисления хлористого водорода в хлор молекулярным кислородом используют ванадаты аммония, калия, натрия или лития (2,5-10 мас.% ванадия от общей массы катализатора), сульфаты и гидроксиды калия, натрия или лития (1,2-21,6 мас.% щелочных металлов в виде сульфатов и гидроксидов от общей массы катализатора) и фосфорную кислоту (2-35 мас.% от общей массы катализатора), нанесенные на силикагель или оксид алюминия (остальное, до 100 мас.%). Удельная поверхность силикагеля или оксида алюминия от 80 до 800 м 2/г, объем пор от 0,3 до 4,5 мл/г, размер частиц от 0,1 до 20 мм. Изобретение позволяет повысить стабильность катализатора от 2,5 до 33 раз и расширить рабочий диапазон температур процесса до 450°С.

Формула изобретения

Ванадиевый катализатор окисления хлористого водорода в хлор молекулярным кислородом, отличающийся тем, что в качестве компонентов катализатора используют ванадаты аммония, калия, натрия или лития (2,5-10 мас.% ванадия от общей массы катализатора), сульфаты и гидроксиды калия, натрия или лития (1,2-21,6 мас.% щелочных металлов от общей массы катализатора) и фосфорную кислоту (2-35 мас.% от общей массы катализатора), нанесенные на силикагель или оксид алюминия (остальное, до 100 мас.%) с удельной поверхностью от 80 до 800 м2/г, объемом пор от 0,3 до 4,5 мл/г и размером частиц от 0,1 до 20 мм.

Описание изобретения к патенту

Изобретение относится к области технологии получения хлорорганических соединений и производства галогенов. В этих областях, как и в других технологиях, возникает задача регенерации молекулярного хлора окислением хлористого водорода, отхода различных производств. Катализаторы окисления хлористого водорода в хлор являются неотъемлемыми веществами, необходимыми для проведения этого процесса.

Известен катализатор окисления хлористого водорода молекулярным кислородом на основе хлорида меди (процесс Дикона [US 85370, 1868]). Недостатки этого катализатора заключаются в низкой его активности и высокой температуре проведения процесса, при которой равновесие процесса окисления сдвинуто в сторону исходных реагентов. Это приводит к образованию сложной смеси целевого продукта, хлора, с исходными реагентами - хлористым водородом и кислородом. Выделение хлора из этой смеси технологически сложно.

Известен катализатор окисления хлористого водорода молекулярным кислородом на основе оксида рутения при 200-380°C [US 6713035]. Этот катализатор характеризуется высокой производительностью, но основной его недостаток заключается в высокой стоимости каталитически активного компонента, диоксида рутения.

Известен катализатор окисления хлористого водорода молекулярным кислородом на основе оксида хрома при 350-450°C [US 4774070, 1988]. В соответствии с известным способом смесь хлористого водорода и кислорода пропускают через слой оксидно-хромового катализатора. Катализатор характеризуется высокой производительностью, до 660 г хлора на 1 кг катализатора в час при температуре 400°C, но при 350°C скорость процесса падает до 220 г хлора на 1 кг катализатора в час. В результате основной недостаток известного катализатора заключается в низкой скорости процесса при температурах 350°C и ниже. Другой недостаток состоит в сложности выделения целевого продукта из получаемой при высоких температурах смеси его с реагентами.

Известен катализатор окисления хлористого водорода молекулярным кислородом на основе ванадиевого ангидрида, пиросульфатов и сульфатов натрия и калия [US 4269817, 1981]. Известный катализатор характеризуется низкой производительностью до 10-20 г хлора на 1 кг катализатора в час при 275-525°C, и в этом состоит его основной недостаток.

Наиболее близким по существу к заявляемому изобретению является катализатор окисления хлористого водорода молекулярным кислородом на основе ванадиевого ангидрида и хлоридов лития и калия [RU 2373139, 2009]. Известный катализатор состоит из 15-85 мас.% ванадиевого ангидрида, 4-52 мас.% хлорида калия и 3-43 мас.% хлорида лития. Катализатор характеризуется высокой каталитической активностью до 240 г хлора на 1 кг катализатора в час при 350°C.

Основной недостаток известного катализатора состоит в низкой его стабильности в условиях процесса: катализатор теряет массу со скоростью 5-20 мас.% в час. Такая высокая скорость потери веса катализатора обусловлена образованием летучего ванадилхлорида (Ткип 127°C) из ванадиевого ангидрида и хлоридов лития и калия в условиях процесса окисления хлористого водорода.

Другой недостаток известного катализатора заключается в низкой температуре начала его плавления, вследствие чего его невозможно использовать как твердый гетерогенный катализатор при температурах более 400°C. Плавление и слеживание катализатора при высоких температурах обусловлено тем, что хлориды лития и калия образуют легкоплавкую эвтектику (Тпл 352°C).

Таким образом, отмеченные недостатки известного продукта обусловлены его существенными признаками - использованием ванадиевого ангидрида и хлоридов калия и лития в качестве компонентов катализатора.

Цель заявляемого изобретения - повышение стабильности катализатора окисления хлористого водорода и расширение температурного диапазона его устойчивой работы.

Поставленная цель достигается тем, что патентуемое вещество, ванадиевый катализатор окисления хлористого водорода кислородом, согласно заявляемому изобретению, в качестве компонентов содержит ванадаты аммония, калия, натрия или лития (2,5-10 мас.% ванадия от общей массы катализатора), сульфаты и гидроксиды калия, натрия или лития (1,2-21,6 мас.% щелочного металла от общей массы катализатора) и фосфорную кислоту (2-35 мас.% от общей массы катализатора), нанесенные на силикагель или оксид алюминия (остальное, до 100 мас.%) с удельной поверхностью от 80 до 800 м2/г, объемом пор от 0,3 до 4,5 мл/г и размером частиц от 0,1 до 20 мм.

Катализатор, содержащий добавки сульфатов и гидроксидов калия, натрия или лития и фосфорную кислоту вместо хлоридов калия и лития в соответствии с предлагаемым способом, оказывается намного более стабильным по сравнению с известным катализатором. Высокая стабильность заявляемого катализатора с добавками сульфатов металлов и фосфорной кислоты обусловлена образованием фосфата ванадила и смешанных сульфатов ванадия и калия, натрия или лития. Эти соединения более устойчивы по сравнению с ванадиевым ангидридом в условиях процесса, а это приводит к снижению равновесной концентрации ванадилхлорида и повышению стабильности катализатора окисления хлористого водорода в соответствии с заявляемым способом по сравнению с прототипом от 2,5 до 33 раз.

Кроме того, нанесение растворимых форм ванадия на поверхность силикагеля или оксида алюминия приводит к сорбции жидких активных компонентов катализатора поверхностью твердого сорбента при рабочих температурах процесса, и это делает заявляемый катализатор механически прочным, неслеживающимся (при высоких температурах) по сравнению с прототипом.

Общие признаки заявляемого способа и прототипа - применение соединений ванадия в катализаторах окисления хлористого водорода молекулярным кислородом.

Отличительными признаками заявляемого изобретения являются использование ванадатов аммония, калия, натрия или лития (2,5-10 мас.% ванадия от общей массы катализатора), сульфатов и гидроксидов калия, натрия или лития (1,2-21,6 мас.% щелочного металла от общей массы катализатора) и фосфорной кислоты (2-35 мас.% от общей массы катализатора), нанесенных на силикагель или оксид алюминия (остальное, до 100 мас.%) с удельной поверхностью от 80 до 800 м2/г, объемом пор от 0,3 до 4,5 мл/г и размером частиц от 0,1 до 20 мм, в качестве компонентов катализатора для проведения процесса окисления хлористого водорода.

Технический результат заявляемого изобретения заключается в повышении стабильности катализатора окисления хлористого водорода от 2,5 до 33 раз, а также в расширении рабочих температур катализатора до 450°C.

Названные отличительные признаки обусловливают достижение технических результатов заявляемого изобретения: повышение стабильности катализатора окисления хлористого водорода от 2,5 до 33 раз, а также расширение диапазона рабочих температур катализатора до 450°C.

Технический результат заявляемого изобретения наблюдается при использовании в качестве компонентов катализатора ванадатов аммония, калия, натрия или лития (2,5-10 мас.% ванадия от общей массы катализатора), сульфатов и гидроксидов калия, натрия или лития (1,2-21,6 мас.% щелочного металла от общей массы катализатора) и фосфорной кислоты (2-35 мас.% от общей массы катализатора), нанесенные на силикагель или оксид алюминия (остальное, до 100 мас.%) с удельной поверхностью от 80 до 800 м2/г, объемом пор от 0,3 до 4,5 мл/г и размером частиц от 0,1 до 20 мм. При содержании ванадия в катализаторе, меньшем названных количеств, его активность падает практически до нуля вследствие низкой концентрации активного компонента. При содержаниях ванадия в катализаторе, больших названного количества, его активность падает ниже показателей прототипа вследствие низкой активности в разрабатываемом процессе образующихся в этих случаях твердых ванадатов. Если содержание фосфорной кислоты, сульфатов и гидроксидов калия, натрия или лития выходит за пределы указанных диапазонов, то стабильность катализатора резко падает ниже показателей прототипа. Снижение удельной поверхности и объема пор силикагеля или окиси алюминия ниже указанных величин, а также увеличение размера гранул катализатора более 20 мм приводят к падению скорости процесса. Сокращение размера гранул менее 0,1 мм и увеличение объема пор более 4,5 мл/г приводит к росту гидродинамического сопротивления слоя катализатора и падению его прочности, соответственно, и не позволяет обеспечить высокие скорости процесса.

Способ подтверждается конкретными примерами.

Пример 1 (прототип). Для приготовления катализатора было взято 5,456 г V2O5 (х.ч.), 1,009 г LiCl (ч.д.а.) и 1,208 г KCl (х.ч.). Соотношение компонентов V2O 5:LiCl:KCl=71 мас.%:13 мас.%:16 мас.% соответственно. Смесь перетиралась в ступке и прокаливалась в стеклянной пробирке при 370°C в течение трех часов. Спекшаяся масса подвергалась дроблению, размолу и просеиванию с отбором фракции 0.63-1 мм. 1 г полученного катализатора - прототип-1 загружали в U-образную стеклянную трубку с внутренним диаметром 6 мм.

Для приготовления реакционной газовой смеси 200 мл HCl (концентрация 34%, ванадиевый катализатор окисления хлористого водорода в хлор молекулярным   кислородом, патент № 2440927 =1,17 г/см3) помещали в стеклянную пробирку с газоотводом, где создавался небольшой вакуум. Через слой HCl при Т=50°C барботировался атмосферный воздух. Газовая смесь содержала 33 об.% HCl, 3,3 об.% H2O и 63,7 об.% воздуха.

Полученную газовую смесь пропускали через слой катализатора, загруженный в U-образный реактор, при 270°C в течение 1 часа. На катализаторе протекал процесс окисления хлороводорода до молекулярного хлора. Выделяющаяся после реакции газовая смесь поступала в поглотительную склянку, наполненную 1 М раствором KI, где происходило поглощение Cl2. Раствор иодида калия постепенно приобретал коричневую окраску за счет выделяющегося I2. Количество образующегося I2 определяли прямым титрованием тиосульфатом натрия в присутствии коллоидного раствора крахмала в качестве индикатора.

Стабильность катализатора оценивали по потере его массы, измеряя вес реактора с катализатором до и после процесса.

Производительность катализатора-прототипа-1 при 270°C составляла 60 г Cl 2 на кг катализатора в час. Потеря массы катализатора за счет образования летучего ванадилхлорида составила 5 мас.% в час в пересчете на исходную массу оксида ванадия в катализаторе.

Пример 2 (прототип). Для проведения опыта был взят 1 г катализатора-прототипа-1, приготовление газовой смеси, методику проведения реакции и анализ выделяющихся газов проводили аналогично примеру-прототипу 1.

Газовую смесь подавали в U-образную трубку, содержащую навеску катализатора, нагретую до 370°C. Продолжительность процесса составляла 1 час.

Производительность катализатора-прототипа-1 при 370°C составляла 240 г Cl2 на кг катализатора в час. Потеря массы катализатора за счет образования летучего ванадилхлорида составила 20 мас.% в час в пересчете на исходную массу оксида ванадия в катализаторе.

Пример 3. Для приготовления катализатора было взято 0,20 г NH4VO3 (х.ч.), 2,00 г NaVO3 (х.ч.), 0,10 г LiOH (ч.д.а.), 0,20 г K2SO4 (ч.д.а.), 0,20 г H3PO 4, 7,30 г SiO2 (х.ч., удельная поверхность 80 м2/г, объем пор 0,30 мл/г, фракция с размером частиц от 0,3 до 0,6 мм). Соотношение компонентов смеси NH4 VO3:NaVO3:LiOH:K2SO4 :H3PO4:SiO2=2,0 мас.%:20,0 мас.%:1,0 мас.%:2,0 мас.%:2,0 мас.%:73,0 мас.%, соответственно. Содержание ванадия 9,3 мас.% от общей массы катализатора, содержание щелочных металлов в виде сульфатов и гидроксидов 1,2 мас.% от общей массы катализатора. Растворами (разумнее было бы сначала пропитывать силикагель кислыми растворами, а затем уже щелочными) NH 4VO3, NaVO3, LiOH, K2SO 4 и фосфорной кислоты пропитывали гранулы силикагеля. Затем гранулы сушили и прокаливали в стеклянной пробирке при 370°C в течение трех часов. Полученный таким образом катализатор использовали для проведения опыта.

Приготовление газовой смеси, методику проведения реакции и анализ выделяющихся газов проводили аналогично примеру 1.

Производительность процесса при Т=370°C составила 280 г Cl2 на 1 кг катализатора в час.

Потеря массы катализатора составила 18 мас.% в час в пересчете на исходную массу оксида ванадия в катализаторе.

Пример 4. Для приготовления катализатора было взято 2,50 г KVO3 (х.ч.), 0,50 г LiOH (ч.д.а.), 3,00 г K 2SO4 (ч.д.а.), 2,00 г H3PO4 , 3,90 г SiO2 (х.ч., удельная поверхность 400 м 2/г, объем пор 1,2 мл/г, фракция с размером частиц от 0,4 до 0,6 мм). Соотношение компонентов смеси KVO3:LiOH:K 2SO4:H3PO4:SiO2 =21,0 мас.%:4,2 мас.%:25,2 мас.%:16,8 мас.%:32,8 мас.%, соответственно. Содержание ванадия 7,8 мас.% от общей массы катализатора, содержание щелочных металлов в виде сульфатов и гидроксидов 12,5 мас.% от общей массы катализатора. Эксперимент проводили так же, как описано в примере 1.

Полученную газовую смесь пропускали через слой катализатора, загруженный в U-образный реактор, при 370°C. Продолжительность процесса составляла 1 час.

Производительность процесса при Т=370°C составила 460 г Cl2 на 1 кг катализатора в час.

Потеря массы катализатора составила 4 мас.% в час в пересчете на исходную массу оксида ванадия в катализаторе.

Пример 5. Для приготовления катализатора было взято 1,00 г KVO3 (х.ч.), 0,3 г LiOH (ч.д.а.), 0,10 г NaOH (ч.д.а.), 0,10 г KOH (ч.д.а.), 1,00 г Li2SO4 (ч.д.а.), 0,8 г Na2SO4 (ч.д.а.), 2,20 г K2SO 4 (ч.д.а.), 1,00 г NH3PO4, 4,80 г SiO2 (х.ч., удельная поверхность 800 м2 /г, объем пор 4,5 мл/г, фракция с размером частиц от 0,6 до 1 мм. Соотношение компонентов смеси KVO3:LiOH:NaOH:КОН:Li 2SO4:Na2SO4:K2 SO4:H3PO4:SiO2=8,8 мас.%:2,7 мас.%:0,9 мас.%:0,9 мас.%:8,8 мас.%:7,1 мас.%:19,5 мас.%:8,8 мас.%:42,5 мас.%, соответственно. Содержание ванадия 3,3 мас.% от общей массы катализатора, содержание щелочных металлов в виде сульфатов и гидроксидов 14,0 мас.% от общей массы катализатора. Эксперимент проводили так же, как описано в примере 1.

Полученную газовую смесь пропускали через слой катализатора, загруженный в U-образный реактор, при 450°C. Продолжительность процесса составляла 1 час.

Производительность процесса при Т=450°C составила 1190 г Cl2 на 1 кг катализатора в час.

Потеря массы катализатора составила 8 мас.% в час в пересчете на исходную массу оксида ванадия в катализаторе.

Пример 6. Для приготовления катализатора было взято 0,80 г NH4VO3 (х.ч.), 1,00 г LiOH (ч.д.а.), 0,10 г К2SO4 (ч.д.а.), 2,50 г H3PO4:5,60 г SiO2 (х.ч., удельная поверхность 400 м2/г, объем пор 3 мл/г, фракция с размером частиц от 0,4 до 0,6 мм). Соотношение компонентов смеси NH4VO3:LiOH:К2SO4 :H3PO4:SiO2=8,0 мас.%:10,0 мас.%:1,0 мас.%:25,0 мас.%:56,0 мас.%, соответственно. Содержание ванадия 3,5 мас.% от общей массы катализатора, содержание щелочных металлов в виде сульфатов и гидроксидов 3,3 мас.% от общей массы катализатора. Эксперимент проводили так же, как описано в примере 1.

Полученную газовую смесь пропускали через слой катализатора, загруженный в U-образный реактор, при 275°C. Продолжительность процесса составляла 1 час.

Производительность процесса при Т=275°C составила 90 г Cl2 на 1 кг катализатора в час.

Потеря массы катализатора составила 0,3 мас.% в час в пересчете на исходную массу оксида ванадия в катализаторе.

Пример 7. Для приготовления катализатора было взято 0,80 г NaVO3 (х.ч.), 0,70 г LiOH (ч.д.а.), 0,20 г Li2SO4 (ч.д.а.), 3,50 г H3PO4: 4,80 г SiO2 (х.ч., удельная поверхность 600 м2/г, объем пор 2 мл/г, фракция с размером частиц от 10 до 20 мм). Соотношение компонентов смеси NaVO3:LiOH:Li2SO4:H3 PO4:SiO2=8,0 мас.%:7,0 мас.%:2,0 мас.%:35,0 мас.%:48,0 мас.%, соответственно. Содержание ванадия 3,3 мас.% от общей массы катализатора, содержание щелочных металлов в виде сульфатов и гидроксидов 2,3 мас.% от общей массы катализатора. Эксперимент проводили в реакторе внутренним диаметром 30 мм, остальные условия аналогично примеру 1.

Полученную газовую смесь пропускали через слой катализатора, загруженный в U-образный реактор, при 370°C. Продолжительность процесса составляла 1 час.

Производительность процесса при Т=370°C составила 220 г Cl2 на 1 кг катализатора в час.

Потеря массы катализатора составила 0,6 мас.% в час в пересчете на исходную массу оксида ванадия в катализаторе.

Пример 8. Для приготовления катализатора было взято 0,85 г LiVO3 (х.ч.), 0,20 г LiOH (ч.д.а.), 2,50 г Na2SO4 (ч.д.а.), 0,70 г H3PO 4:6,40 г SiO2 (х.ч., удельная поверхность 200 м2/г, объем пор 1,2 мл/г, фракция с размером частиц от 0,4 до 0,6 мм. Соотношение компонентов смеси LiVO3 :LiOH:Na2SO4:H3PO4 :SiO2=8,0 мас.%:1,9 мас.%:23,5 мас.%:6,6 мас.%:60,1 мас.%, соответственно. Содержание ванадия 3,8 мас.% от общей массы катализатора, содержание щелочных металлов в виде сульфатов и гидроксидов 8,2 мас.% от общей массы катализатора. Эксперимент проводили так же, как описано в примере 1.

Полученную газовую смесь пропускали через слой катализатора, загруженный в U-образный реактор, при 370°C. Продолжительность процесса составляла 1 час.

Производительность процесса при Т=370°C составила 360 г Cl2 на 1 кг катализатора в час.

Потеря массы катализатора составила 3 мас.% в час в пересчете на исходную массу оксида ванадия в катализаторе.

Пример 9. Для приготовления катализатора было взято 2,00 г NH4VO3 (х.ч.), 0,15 г NaOH (ч.д.а.), 2,00 г Li2SO4 (ч.д.а.), 0,20 г H3 PO4: 5,80 г SiO2 (х.ч., удельная поверхность 200 м2/г, объем пор 3 мл/г, фракция с размером частиц от 1 до 1,6 мм). Соотношение компонентов смеси NH4 VO3:NaOH:Li2SO4:H3 PO4:SiO2=19,7 мас.%:1,5 мас.%:19,7 мас.%:2,0 мас.%:57,1 мас.%, соответственно. Содержание ванадия 8,6 мас.% от общей массы катализатора, содержание щелочных металлов в виде сульфатов и гидроксидов 3,3 мас.% от общей массы катализатора. Эксперимент проводили, как в примере 1.

Полученную газовую смесь пропускали через слой катализатора, загруженный в U-образный реактор, при 370°C. Продолжительность процесса составляла 1 час.

Производительность процесса с катализатором фракции от 0,1 до 0,2 (в ходе приготовления указанная фракция была иной) мм при Т=370°C составила 620 г Cl 2 на 1 кг катализатора в час.

Потеря массы катализатора составила 11 мас.% в час в пересчете на исходную массу оксида ванадия в катализаторе.

Пример 10. Для приготовления катализатора было взято 0,40 г KVO3 (х.ч.), 0,40 г NaVO3 (х.ч.), 0,45 г LiVO3 (х.ч.), 1,60 г KOH (ч.д.а.), 1,60 г Li2SO4 (ч.д.а.), 1,80 г H3PO4 14,60 г SiO 2 (х.ч., удельная поверхность 400 м2/г, объем пор 4,5 мл/г, фракция с размером частиц от 6 до 10 мм). Соотношение компонентов смеси KVO3:NaVO3:LiVO3 :KOH:Li2SO4:H3PO4 :SiO2=1,9 мас.%:1,9 мас.%:2,1 мас.%:7,7 мас.%:7,7 мас.%:8,6 мас.%:70,0 мас.%, соответственно. Содержание ванадия 2,5 мас.% от общей массы катализатора, содержание щелочных металлов в виде сульфатов и гидроксидов 6,3 мас.% от общей массы катализатора. Эксперимент проводили в реакторе диаметром 30 мм. В реактор загружали 10 г катализатора, эксперимент проводили так же, как в примере 1.

Полученную газовую смесь пропускали через слой катализатора, загруженный в U-образный реактор, при 370°C. Продолжительность процесса составляла 1 час.

Производительность процесса с катализатором фракции от 6 до 10 мм при Т=370°C составила 80 г Cl2 на 1 кг катализатора в час.

Потеря массы катализатора составила 0,8 мас.% в час в пересчете на исходную массу оксида ванадия в катализаторе.

Пример 11. Для приготовления катализатора было взято 3,8 г NH4VO3 (х.ч.), 0,2 г LiVO3 (х.ч.), 0,50 г KOH (ч.д.а.), 7,10 г K2SO4 (ч.д.а.), 0,80 г Na2SO4 (ч.д.а.), 2,00 г H3PO4, 4,70 г Al2O3 (х.ч., удельная поверхность 200 м2/г, объем пор 1,7 мл/г, фракция с размером частиц от 0,6 до 1 мм). Соотношение компонентов смеси NH4VO3:LiVO3 :KOH:K2SO4:Na2SO4 :H3PO4:Al2O3=21,6 мас.%:1,1 мас.%:2,8 мас.%:40,3 мас.%:4,5 мас.%:2,8 мас.%, 26,7 мас.%, соответственно. Содержание ванадия 10 мас.% от общей массы катализатора, содержание щелочных металлов в виде сульфатов и гидроксидов 21,6 мас.% от общей массы катализатора. В U-образный реактор диаметром 7 мм загружали 1 г катализатора, эксперимент проводили при 370°C так же, как в примере 1. Продолжительность процесса составляла 1 час.

Производительность процесса с катализатором фракции от 0,6 до 1 мм при Т=370°C составила 280 г Cl2 на 1 кг катализатора в час.

Потеря массы катализатора составила 9 мас.% в час в пересчете на исходную массу оксида ванадия в катализаторе.

Пример 12. Для приготовления катализатора было взято 1,50 г KVO3 (х.ч.), 2,20 г NaOH (ч.д.а.), 0,10 г LiOH (ч.д.а.), 4,00 г H3PO4, 9,00 г Al2 O3 (х.ч, удельная поверхность 80 м2/г, объем пор 4 мл/г, фракция с размером частиц от 2 до 3 мм). Соотношение компонентов смеси KVO3:NaOH:LiOH:H3PO 4:Al2O3=8,9 мас.%:13,1 мас.%:0,6 мас.%:23,8 мас.%:53,6 мас.%, соответственно. Содержание ванадия 3,3 мас.% от общей массы катализатора, содержание щелочных металлов в виде сульфатов и гидроксидов 7,7 мас.% от общей массы катализатора. Эксперимент проводили в реакторе диаметром 30 мм. В реактор загружали 10 г катализатора, эксперимент проводили так же, как в примере-прототипе-1.

Газовую смесь пропускали через слой катализатора, загруженный в U-образный реактор, при 370°C. Продолжительность процесса составляла 1 час.

Производительность процесса с катализатором фракции от 2 до 3 мм при Т=370°C составила 150 г Cl2 на 1 кг катализатора в час.

Потеря массы катализатора составила 4 мас.% в час в пересчете на исходную массу оксида ванадия в катализаторе.

Класс C01B7/04 получение хлора из хлористого водорода

способ извлечения хлора из отходов в производстве хлора и винилхлорида -  патент 2498937 (20.11.2013)
способ регенерации содержащего рутений или соединения рутения катализатора, отравленного серой в виде сернистых соединений -  патент 2486008 (27.06.2013)
устойчивый к воздействию температуры катализатор для окисления хлороводорода в газовой фазе -  патент 2486006 (27.06.2013)
способ получения хлора из хлороводорода с помощью вольфрамсодержащих соединений -  патент 2485046 (20.06.2013)
способ получения хлора каталитическим окислением хлористого водорода и способ получения изоцианатов -  патент 2480402 (27.04.2013)
способ получения хлора окислением в газовой фазе -  патент 2475447 (20.02.2013)
катализатор и способ изготовления хлора путем окисления хлороводорода в газовой фазе -  патент 2469790 (20.12.2012)
способ получения серы из сероводорода -  патент 2448040 (20.04.2012)
способ конверсии хлороводорода для получения хлора -  патент 2448038 (20.04.2012)
каталитическая система для гетерогенных реакций -  патент 2446877 (10.04.2012)

Класс B01J23/22 ванадий

каталитическая система и способ гидропереработки тяжелых масел -  патент 2525470 (20.08.2014)
катализатор окисления ртути и способ его приготовления -  патент 2493908 (27.09.2013)
каталитический элемент для осуществления гетерогенно-каталитических реакций -  патент 2489209 (10.08.2013)
смешанные металлооксидные катализаторы и способ каталитической конверсии низших алифатических углеводородов -  патент 2476265 (27.02.2013)
способ приготовления катализатора, состоящего из носителя и нанесенной на поверхность носителя каталитически активной массы -  патент 2464085 (20.10.2012)
способ регенерации катализатора для обработки отходящего газа и катализатор для обработки отходящего газа, полученный этим способом -  патент 2436628 (20.12.2011)
биметаллические катализаторы алкилирования -  патент 2419486 (27.05.2011)
способ получения хлора каталитическим окислением хлористого водорода молекулярным кислородом -  патент 2417945 (10.05.2011)
способ получения хлора каталитическим окислением хлористого водорода -  патент 2409516 (20.01.2011)
способ получения фенола -  патент 2397155 (20.08.2010)

Класс B01J23/04 щелочные металлы

способ приготовления катализатора для окислительной конденсации метана, катализатор, приготовленный по этому способу, и способ окислительной конденсации метана с использованием полученного катализатора -  патент 2515497 (10.05.2014)
способ определения устойчивости катализатора для дегидрирования алкилароматических углеводородов -  патент 2508163 (27.02.2014)
способ получения катализатора -  патент 2498852 (20.11.2013)
катализатор для применения в высокотемпературной реакции сдвига и способ обогащения смеси синтез-газа водородом или монооксидом углерода -  патент 2498851 (20.11.2013)
катализатор дегидрирования метанола, используемый для получения метилформиата, и способ получения метилформиата -  патент 2489208 (10.08.2013)
способ получения катализатора для очистки воды от загрязнения углеводородами -  патент 2479349 (20.04.2013)
катализатор и способ конвертации природного газа в высокоуглеродистые соединения -  патент 2478426 (10.04.2013)
способ получения титанатного фотокатализатора, активного в видимой области спектра -  патент 2466791 (20.11.2012)
материал для покрытия с каталитической активностью и применение материала покрытия -  патент 2466163 (10.11.2012)
катализатор дегидрирования, способ его получения и способ получения олефиновых углеводородов c2-c5 с использованием этого катализатора -  патент 2463109 (10.10.2012)

Класс B01J27/16 содержащие кислород

способ получения циановодорода при каталитическом окислении в аммиачной среде -  патент 2454277 (27.06.2012)
способ производства жидкого топлива -  патент 2437716 (27.12.2011)
цеолитные катализаторы с контролируемым содержанием промотирующего элемента и улучшенный способ обработки углеводородных фракций -  патент 2378050 (10.01.2010)
способ получения альдегидов c3-c21 -  патент 2354642 (10.05.2009)
каталитически активное аморфное пористое твердое вещество и способ его приготовления -  патент 2342191 (27.12.2008)
катализатор пиролиза пропан-бутанового углеводородного сырья в низшие олефины и способ его получения -  патент 2331473 (20.08.2008)
сферические катализаторы для превращения углеводородов в легкие олефины -  патент 2307863 (10.10.2007)
катализатор и способ алкилирования изобутана -  патент 2306175 (20.09.2007)
способ получения катализатора отверждения эпоксидно- фенольных композиций -  патент 2230756 (20.06.2004)
катализатор и способ получения винилацетата с его использованием -  патент 2225254 (10.03.2004)

Класс B01J27/055 с щелочными металлами, медью, золотом или серебром

Наверх