способ получения 1,4-цис-полиизопрена
Классы МПК: | C08F136/08 изопрен |
Автор(ы): | Захаров Вадим Петрович (RU), Монаков Юрий Борисович (RU), Берлин Александр Александрович (RU), Мингалеев Вадим Закирович (RU), Насыров Ильдус Шайхетдинович (RU), Морозов Юрий Витальевич (RU), Тайбулатов Павел Алексеевич (RU) |
Патентообладатель(и): | Учреждение Российской академии наук Институт органической химии Уфимского научного центра РАН (RU) |
Приоритеты: |
подача заявки:
2010-06-02 публикация патента:
10.01.2012 |
Изобретение относится к нефтехимической промышленности и направлено на получение 1,4-цис-полиизопрена на каталитической системе TiCl4-Al(i-C4H9) 3. В способе получения 1,4-цис-полиизопрена непрерывной полимеризацией изопрена в среде толуола при 25°С осуществляют кратковременное (2-3 с) турбулентное перемешивание компонентов катализатора в трубчатом турбулентном реакторе диффузор-конфузорной конструкции, затем катализатор выдерживают 30 минут при температуре ноль - минус десять градусов и подают его в полимеризатор. Технический результат данного способа получения 1,4-цис-полиизопрена состоит в снижении содержания гель-фракции до 0,5 масс.% и сужении молекулярно-массового распределения. При этом синтезируется полиизопрен с высоким (96%) содержанием 1,4-цис-звеньев. 1 табл.
Формула изобретения
Способ получения 1,4-цис-полиизопрена непрерывной полимеризацией изопрена в среде органического растворителя в присутствии каталитической системы TiCl4-Al(i-С4Н9) 3 при мольном соотношении Al:Ti, равном 1,0:1,0, отличающийся тем, что полимеризацию проводят при температуре 25°С, в качестве органического растворителя используют толуол, компоненты катализатора подвергают предварительному кратковременному (2-3 с) турбулентному перемешиванию в трубчатом турбулентном реакторе диффузор-конфузорной конструкции при скорости турбулентного потока 0,8-1,0 м/с с последующим выдерживанием катализатора в течение 30 мин при 0÷(-10)°С и подачей его в полимеризатор.
Описание изобретения к патенту
Изобретение относится к нефтехимической промышленности и может быть использовано в процессе получения 1,4-цис-изопренового каучука (СКИ-3), являющегося продуктом стереоспецифической растворной полимеризации изопрена в присутствии титанового катализатора TiCl4-Al(i-C4H9)3.
Известен способ получения 1,4-цис-полиизопрена непрерывной полимеризацией изопрена в среде изопентана в присутствии каталитической системы Циглера-Натта TiCl4-Al(i-С 4Н9)3. В качестве недостатка способа следует отметить высокий расход катализатора и высокое содержание гель-фракции (20-30 масс.%) [Синтетический каучук. Под ред. И.В.Гармонова. Л.: Химия. 1983. 559 с.]. Все это отрицательно сказывается на качестве и себестоимости продукции.
Наиболее близким к изобретению является непрерывная полимеризация изопрена в среде изопентана в присутствии каталитической системы TiCl4 -Al(i-С4Н9)3 с молярным соотношением Al:Ti, равным 1,0:1,0, содержащей в качестве модификаторов дипроксид или хлоранил и пиперилен [Ru 2059657 C1, 10.05.1996]. Полимеризационную смесь предварительно подают в многозонный предреактор, снабженный диффузорами и конфузорами, при скорости потока 0,5 м/с с последующей подачей смеси в полимеризатор. В качестве недостатка данного способа следует отметить, что данный способ полимеризации позволяет получать полимер с содержанием гель-фракции в пределах 9,8 масс.%, что отрицательно сказывается на эксплуатационных показателях полимера.
Задача, на решение которой направлено заявляемое изобретение, заключается в получении 1,4-цис-полизопрена с пониженным содержанием гель-фракции, за счет модификации микрогетерогенной каталитической системы TiCl4-Al(i-С4Н 9)3.
В заявленном техническом решении указанный результат достигается тем, что в способе получения 1,4-цис-полиизопрена непрерывной полимеризацией изопрена в среде толуола при 25°С в присутствии каталитической системы TiCl 4-Al(i-С4Н9)3 осуществляется предварительное кратковременное (2-3 с) турбулентное перемешивание компонентов катализатора в трубчатом турбулентном реакторе диффузор-конфузорной конструкции, установленном непосредственно перед объемным реактором смешения. Скорость турбулентного потока составляет 0,8-1 м/с.
Сущность изобретения заключается в эффективном целенаправленном снижении радиуса частиц титанового катализатора. Этот эффект достигается в пространственном разделении стадии взаимодействия исходных компонентов каталитического комплекса, которая протекает в условиях кратковременного (2-3 с) турбулентного перемешивания. Снижение размеров частиц катализатора под действием турбулентных пульсаций сплошной среды и его равномерное распределение в зоне реакции в условиях высокой турбулентной диффузии приводит к снижению вероятности взаимодействия растущих полимерных цепей с поверхностью катализатора и, как следствие, протекания реакций, приводящих к образованию гель-фракции.
Существенное снижение гель-фракции в 1,4-цис-полиизопрене достигается при смешении толуольных растворов TiCl4 и Al(i-С4Н 9)3 при мольном соотношении Al:Ti, равном 1,0:1,0, в шестисекционном трубчатом турбулентном реакторе диффузор-конфузорной конструкции в течение 2-3 с. После чего образующаяся суспензия катализатора выдерживается в течение 30 мин при 0°÷(-10)°С. Затем в выдержанный катализатор вводится раствор изопрена и далее полимеризация проводится при обычном перемешивании при 25°С.
Преимущества данного способа получения 1,4-цис-полиизопрена состоят в снижении содержания гель-фракции до 0,5 масс.% и сужении молекулярно-массового распределения. При этом синтезируется полиизопрен с высоким (96%) содержанием 1,4-цис-звеньев.
Сущность изобретения подтверждается следующими примерами.
Пример 1 (модель традиционной схемы проведения полимеризации в условиях промышленного производства). Отдельно готовят толуольные растворы TiCl4 и Al(i-С4Н9) 3, которые смешивают в реакторе, снабженном перемешивающим устройством. Полученный катализатор хранится в условиях постоянного механического перемешивания при температуре (-10)÷(-15)°C и периодически дозируется на полимеризацию. Процесс ведут в изопентане, в котором поддерживается концентрация изопрена 15-17%. Полимеризация проводится при постоянном перемешивании. Температуру процесса увеличивают с 45°С до 55°С. Полученный полимер содержит 20-30 масс.% гель-фракции. Свойства полученного 1,4-цис-полиизопрена по примеру 1 приведены в таблице.
Пример 2 (по прототипу). При 0°С отдельно готовят раствор TiCl4 в толуоле с дифенилоксидом (ДФО), при этом мольное соотношение ДФО:TiCl4 равно 0,1:1,0 и раствор Al(i-С4 Н9)3 в толуоле с пипериленом, в котором мольное соотношение пиперилен: Al(i-С4Н9 )3 равно 0,1:1,0. Эти растворы смешивают в отдельном объемном аппарате при медленном перемешивании. Мольное соотношение Al:Ti составляет 1,0:1,0. Приготовленный таким образом каталитический комплекс подают в многозонный трубчатый предреактор, туда же вводят 17%-ный раствор изопрена в изопентане. Скорость турбулентного потока составляет 0,5 м/с. Далее шихту со скоростью 20 т/ч подают в стальной объемный реактор полимеризации, объем которого равен 16 м3, при температуре 6° С. Полимеризацию ведут при перемешивании реакционной массы. Полученный полимер содержит 96% 1,4-цис-звеньев и 9,8 масс.% гель-фракции. Свойства полученного 1,4-цис-полиизопрена по примеру 2 приведены в таблице.
Пример 3 (по изобретению). Готовят толуольные растворы TiCl 4 и Al(i-С4Н9)3. Эти растворы, исходя из того что мольное соотношение Al:Ti равно 1,0:1,0, смешивают в трубчатом турбулентном реакторе диффузор-конфузорной конструкции, где в турбулентном режиме протекает быстрая реакция с образованием каталитически активного осадка. Скорость турбулентного потока составляет 1 м/с. Время пребывания каталитического комплекса в трубчатом аппарате составляет 2-3 секунды. Приготовленный таким образом каталитический комплекс выдерживают 30 минут при 0°С. Далее каталитический комплекс подается в стальной реактор полимеризации с мешалкой, куда вводится 17% раствор изопрена в толуоле. Полимеризацию ведут при медленном перемешивании реакционной массы при 25°С. Полученный полимер содержит 96% 1,4-цис-звеньев и 0,5% гель-фракции. Свойства полученного полиизопрена по примеру 3 приведены в таблице.
Таблица | ||||
Физико-химические показатели полимера СКИ-3 | ||||
№ | Показатели полимера | Характеристики СКИ-3 | ||
Пример 1 | Пример 2 | Пример 3 | ||
1 | Вязкость по Муни, не более | 74 | 80 | 79 |
2 | Пластичность | 0,3 | 0,32 | 0,31 |
3 | Эластическое восстановление, мм, не более | 1,7 | 1,7 | 1,6 |
4 | Условная прочность при растяжении, МПа (кгс/см2), | | ||
при 23°С, не менее | 31,7 | 35,0 | 36,4 | |
при 100°С, не менее | 22,0 | 26,9 | 27,4 | |
5 | Относительное удлинение, % | 813 | 854 | 810 |
6 | Потеря массы при сушке, %, не более | 0,6 | 0,4 | 0,3 |
7 | ММР | 8,2 | 5,1 | 3,8 |
8 | Гель-фракция, масс.% | 20-30 | 9,8 | 0,5 |