способ нанесения покрытий

Классы МПК:C23C4/12 характеризуемые способом распыления
B82B3/00 Изготовление или обработка наноструктур
Автор(ы):, , ,
Патентообладатель(и):Государственный научный центр Российской Федерации - Федеральное государственное унитарное предприятие "Исследовательский центр имени М.В. Келдыша" (ФГУП "Центр Келдыша") (RU)
Приоритеты:
подача заявки:
2010-03-16
публикация патента:

Изобретение относится к способам нанесения покрытий из наночастиц и может быть использовано в плазмометаллургии, плазмохимии и машиностроительной промышленности. Технический результат - повышение рабочих характеристик покрытий, упрощение технологии, повышение ее экологичности. Способ включает установку плазмотрона в камеру с пониженным давлением, поддержание динамического вакуума в камере, подачу плазмообразующего газа и порошка напыляемого материала в плазмотрон и распыление материала сверхзвуковым потоком плазмы в камере с образованием паровой фазы распыляемого материала. При этом в камере у выходного сечения плазмотрона устанавливают стенку в форме тупого угла АСВ таким образом, что упомянутый угол является внешним по отношению к углу отклонения части СВ стенки от оси плазменной струи, составляющему не менее 10 градусов. Распыление осуществляют с обеспечением расширения подаваемого газового потока при обтекании плазменной струи упомянутой стенки и образования веера волн разрежения в ее угловой точке (С), с конденсацией наночастиц из паровой фазы напыляемого материала в плазмообразующем газе и их выпадением на подложке с образованием покрытия, состоящего из наночастиц. 1 ил. способ нанесения покрытий, патент № 2436862

способ нанесения покрытий, патент № 2436862

Формула изобретения

Способ нанесения покрытий, включающий установку плазмотрона в камеру с пониженным давлением, поддержание динамического вакуума в камере, подачу плазмообразующего газа и порошка напыляемого материала в плазмотрон и распыление материала сверхзвуковым потоком плазмы в камере с образованием паровой фазы распыляемого материала, отличающийся тем, что в камере у выходного сечения плазмотрона устанавливают стенку в форме тупого угла АСВ таким образом, что упомянутый угол является внешним по отношению к углу отклонения части СВ стенки от оси плазменной струи, составляющему не менее 10°, а распыление осуществляют с обеспечением расширения подаваемого газового потока при обтекании плазменной струи упомянутой стенки и образования веера волн разрежения в угловой точке (С), с конденсацией наночастиц из паровой фазы напыляемого материала в плазмообразующем газе и их выпадением на подложке с образованием покрытия, состоящего из наночастиц.

Описание изобретения к патенту

Изобретение относится к области нанотехнологий, используемых для получения наночастиц с последующим нанесением покрытий, и может найти применение в плазмометаллургии, плазмохимии и машиностроительной промышленности.

Известен способ нанесения покрытий [1], в котором при помощи плазменного распыления порошков материалов микронных размеров сверхзвуковыми потоками плазмы в камерах с пониженным давлением наносятся покрытия на подложку. Во время нанесения покрытия в камере поддерживается динамический вакуум, т.е. процесс происходит в камере, в которую, с одной стороны, из плазмотрона поступает плазма, а с другой стороны, постоянно ведется откачка атмосферы камеры вакуумными насосами. Недостатком данного способа является то, что напыление на подложку происходит смесью как мелких (0,5-1 мкм), так и крупных (1-5 мкм) частиц напыляемого вещества, что затрудняет обеспечение как высокой адгезионной прочности сцепления покрытия с подложкой, так и высокой прочности всего покрытия в целом.

Задачей предлагаемого изобретения является существенное улучшение рабочих характеристик покрытий за счет нанесения их наночастицами, получающихся экологически безопасным способом из порошков различных материалов микронного уровня в едином производственном цикле.

Для достижения этого технического результата в предлагаемом способе нанесения покрытий, включающем установку плазмотрона в камеру с пониженным давлением, поддержание динамического вакуума в камере, подачу плазмообразующего газа и порошка напыляемого материала в плазмотрон и распыление материала сверхзвуковым потоком плазмы в камере с образованием паровой фазы распыляемого материала, в камере у выходного сечения плазмотрона устанавливают стенку в форме тупого угла АСВ таким образом, что упомянутый угол является внешним по отношению к углу отклонения части СВ стенки от оси плазменной струи, составляющему не менее 10 градусов, а распыление осуществляют с обеспечением расширения подаваемого газового потока при обтекании плазменной струи упомянутой стенки и образования веера волн разрежения в угловой точке (С), с конденсацией наночастиц из паровой фазы напыляемого материала в плазмообразующем газе и их выпадением на подложке с образованием покрытия, состоящего из наночастиц.

На чертеже схематично представлен плазмотрон, с помощью которого может быть осуществлен предлагаемый способ. Для осуществления способа используется течение Прандтля-Майера [2], которое реализуется при сверхзвуковом обтекании внешнего тупого угла с образованием в угловой точке веера волн разряжения. В вакуумную камеру помещается плазмотрон [3], в плазмообразующий газ которого добавляется порошок материала, из которого необходимо получить наночастицы. Струя плазмы, содержащая плазмообразующий газ и материал в паровой фазе, в которую он перешел в плазмотроне и в сверхзвуковом сопле 1 плазмотрона (см. чертеж), истекает в область динамического вакуума. В недорасширенной струе плазмы при этом возникает висячий скачок уплотнения 2, внутри которого реализуется сверхзвуковое течение, совпадающее с истечением струи в вакуум [4].

Вблизи выходного сечения сопла плазмотрона, внутри висячего скачка уплотнения, устанавливается стенка в форме внешнего тупого угла 3 с углом отклонения от оси плазменной струи не менее 10 градусов. Истекающая из сопла плазмотрона с числом Маха Ма струя разгоняется внутри висячего скачка уплотнения до еще большего числа Маха Мк перед угловой точкой С. В точке С стенка поворачивает, образуя с первоначальным направлением угол способ нанесения покрытий, патент № 2436862 0. При сверхзвуковом обтекании тупого угла АВС газ расширяется (см. чертеж), ибо область, занятая газом, увеличивается; при этом расширении плазма доразгоняется до числа Маха M L>MK. В угловой точке С при этом образуется веер волн разряжения, в котором сверхзвуковой поток меняет направление с АС на СВ и значительно ускоряется.

При ускорении плазмы в окрестности точки С от МК до ML происходит резкое падение статической температуры и статического давления потока. Плазма, находящаяся на линии тока 4 до угловой точки С, при развороте на угол способ нанесения покрытий, патент № 2436862 0 переходит на линии тока 5, которые характеризуют сверхзвуковое течение плазмы над стенкой СВ. Расчеты отрицательных величин градиентов температуры и давления, которые при этом реализуются в окрестности точки С при способ нанесения покрытий, патент № 2436862 0~10÷20° показали, что они достигают очень больших величин: ~108 [К/с] и ~108 [Па/с], соответственно.

Резкое охлаждение и резкое падение давления в плазме, содержащей парообразную фазу материала, приводит к осуществлению в окрестности точки С в области KCL конденсации с образованием наночастиц 6 из порошка материала, помещенного в плазмообразующий газ плазмотрона. Образующиеся наночастицы способны частично выпадать на стенку СВ, но основное их количество располагается на линиях тока 5, находясь в сверхзвуковом потоке при числе Маха ML; абсолютная величина скорости, которую наночастицы достигают в области LCB, ~2 км/с. Размещая в этой области подложку 7, можно в непрерывном производственном цикле получать на ней покрытие из наночастиц, которое будут обладать более высокими рабочими характеристиками, чем покрытие из частиц микронного уровня, а расплавленные частицы порошка не выпадают на подложку, так как в веере волн разряжения они не отклоняются от своего первоначального направления вдоль оси плазменной струи.

Предлагаемое техническое решение позволяет достаточно просто получать наночастицы из любых веществ: металлов, оксидов, карбидов, нитридов, боридов и т.п. и затем в непрерывном производственном цикле получать из них покрытия; при этом способ нанесения покрытий с помощью наночастиц является экологически безопасным, т.к. весь процесс, начиная от формирования наночастиц до нанесения покрытий, происходит в замкнутом объеме вакуумной камеры, полностью изолированной от обслуживающего персонала.

Класс C23C4/12 характеризуемые способом распыления

способ лазерно-плазменного наноструктурирования металлической поверхности -  патент 2526105 (20.08.2014)
устройство и способ формирования аморфной покрывающей пленки -  патент 2525948 (20.08.2014)
способ получения магнитотвердого покрытия из сплава самария с кобальтом -  патент 2524033 (27.07.2014)
монокристаллическая сварка направленно упрочненных материалов -  патент 2516021 (20.05.2014)
способ восстановления внутренней поверхности ступицы направляющего аппарата центробежного электронасоса -  патент 2510426 (27.03.2014)
способ металлизации древесины -  патент 2509826 (20.03.2014)
способ получения защитно-декоративных покрытий на изделиях из древесины -  патент 2509823 (20.03.2014)
способ получения медного покрытия на керамической поверхности газодинамическим напылением -  патент 2506345 (10.02.2014)
способ получения покрытия нитрида титана -  патент 2506344 (10.02.2014)
способ газодинамического детонационного ускорения порошков и устройство для его осуществления -  патент 2506341 (10.02.2014)

Класс B82B3/00 Изготовление или обработка наноструктур

Наверх