испаритель анестетиков

Классы МПК:A61M16/01 специально предназначенные для анестезии
Автор(ы):, , , , , , , , ,
Патентообладатель(и):Берлин Александр Зиновьевич (RU)
Приоритеты:
подача заявки:
2010-06-09
публикация патента:

Изобретение относится к анестезиологии. Испаритель анестетиков содержит газораспределительное устройство с термокомпенсатором, камеру анестетика с набором испарительных элементов из капилляроактивного материала, сообщенную с входом и выходом газораспределительного устройства, и термостабилизатор с жидкостью. Термостабилизатор выполнен в виде набора баллонов с жидкостью размещен в камере анестетика. Испарительные элементы совмещены с баллонами, внешние стенки которых обернуты капилляроактивным материалом. В баллонах использована жидкость с температурой затвердевания выше нижнего предела рабочей температуры испарителя. Концентрация паров анестетика на выходе камеры равновесна с жидким анестетиком при температуре жидкости в баллонах. Технический результат состоит в повышении стабильности дозирования анестетика. 4 з.п. ф-лы, 5 ил.

испаритель анестетиков, патент № 2436600 испаритель анестетиков, патент № 2436600 испаритель анестетиков, патент № 2436600 испаритель анестетиков, патент № 2436600 испаритель анестетиков, патент № 2436600

Формула изобретения

1. Испаритель анестетиков, содержащий газораспределительное устройство с термокомпенсатором, камеру анестетика с набором испарительных элементов из капилляроактивного материала, сообщенную с входом и выходом газораспределительного устройства, и термостабилизатор с жидкостью, отличающийся тем, что термостабилизатор выполнен в виде набора баллонов с жидкостью размещен в камере анестетика, испарительные элементы совмещены с баллонами, внешние стенки которых обернуты капилляроактивным материалом, в баллонах использована жидкость с температурой затвердевания выше нижнего предела рабочей температуры испарителя, при этом концентрация паров анестетика на выходе камеры равновесна с жидким анестетиком при температуре жидкости в баллонах.

2. Испаритель по п.1, отличающийся тем, что он снабжен теплообменником, вход которого соединен с источником газа, а выход - с входом газораспределительного устройства.

3. Испаритель по п.2, отличающийся тем, что теплообменник расположен под дном камеры анестетика и его гидромеханическое сопротивление сопоставимо с сопротивлением газораспределительного устройства.

4. Испаритель по п.1, отличающийся тем, что дополнительные баллоны термостабилизатора размещены на периферийных участках камеры анестетика в эпицентре траекторий вторичных потоков газа.

5. Испаритель по п.1, отличающийся тем, что оснащен индикатором расхода V анестетика и концентрации С испарителя в зависимости от свежего газотока F во время индукции испаритель анестетиков, патент № 2436600 1 и поддержания испаритель анестетиков, патент № 2436600 2 анестезии согласно соотношению Vиспаритель анестетиков, патент № 2436600 ka(C1 F1 испаритель анестетиков, патент № 2436600 1+C2 F2 испаритель анестетиков, патент № 2436600 2), где ka=0,0416 M/испаритель анестетиков, патент № 2436600 ; M, испаритель анестетиков, патент № 2436600 - молекулярная масса и плотность жидкого анестетика.

Описание изобретения к патенту

Изобретение относится к медицинской технике, а именно к испарителям анестетиков и аппаратам ингаляционного наркоза (ИН). Испаритель насыщает поток газа-носителя (атмосферный воздух или сжатые медицинские газы) парами анестетика, после чего сформированную парогазовую смесь подают пациенту.

Известны различные конструкции испарителей (патенты РФ № № 2329832, 2329069, 2178314, 2000817, 1810061; патенты США № № 6526297, 6816669; кн. Берлин А.З., Мещеряков А.В. «Наркоз и дозирование анестетиков». М., Медицина, 1980).

Испаритель по патенту РФ № 2329069 («МИНИВАП-20») содержит газораспределительное устройство с термокомпенсатором и камеру анестетика с набором испарительных элементов из капилляроактивного материала. Он отличается минимальными размерами и стабильностью дозирования при низких и средних газотоках и концентрациях.

Однако производительность по анестетику этого мини-испарителя, с одной стороны, ограничена минимальными размерами и теплоемкостью камеры анестетика, с другой стороны, при максимальной концентрации и газотоке во время вводного наркоза (индукции анестезии), например, севофлюраном (8 об.% и 6 л/мин в течение нескольких минут) термокомпенсатор не успевает отследить быстрое падение температуры в камере анестетика до 10°С, так как отделен от нее газовыми прослойками и металлическими стенками. Это приводит к недостаточной стабильности дозирования при максимальной концентрации и газотоке.

Испаритель по патенту РФ № 2329832 («МИНИВАП-100») является наиболее близким по технической сущности и выбран в качестве прототипа патентуемого изобретения. Он содержит с газораспределительное устройство с термокомпенсатором, камеру анестетика с набором испарительных элементов из капилляроактивного материала и термостабилизатор с водой или соляным раствором. Однако, несмотря на дополнительную теплоемкость раствора и массу самого испарителя, при максимальной концентрации и газотоке во время индукции анестезии температура камеры также достаточно быстро уменьшается (порядка градуса в минуту), например, от 20 до 10-15°С, а вместе с ней давление насыщенных паров (например, севофлюрана от 20,5 до 12,5 кПа) и концентрация анестетика на выходе испарителя. При этом термокомпенсатор по-прежнему не успевает отследить относительно быстрое падение температуры в камере анестетика.

Настоящее изобретение решает задачу повышения стабильности дозирования анестетика. Решение поставленной задачи достигается совокупностью новых схемотехнических и конструктивных решений, реализованных в патентуемом испарителе.

Испаритель анестетиков аналогичный конструкции по патенту № 2329832, содержащий газораспределительное устройство с термокомпенсатором, камеру анестетика с набором испарительных элементов из капилляроактивного материала и термостабилизатор с жидкостью, согласно настоящему изобретению его термостабилизатор выполнен в виде набора баллонов с жидкостью, внешние стенки которых обернуты капилляроактивным материалом, а температура затвердевания жидкости выше нижнего предела рабочих температур испарителя. В качестве жидкости термостабилизатора выбран цетан (гексадекан).

Изобретением предусмотрено, что испаритель снабжен теплообменником, вход которого соединен с источником газа, а выход - с входом газораспределительного устройства.

При этом теплообменник расположен под дном камеры анестетика и его гидромеханическое сопротивление сопоставимо с сопротивлением газораспределительного устройства.

Предусмотрено, что баллоны термостабилизатора совмещены с испарительными элементами.

Согласно настоящему изобретению дополнительные баллоны термостабилизатора размещены на периферийных участках камеры анестетика в эпицентре траекторий вторичных потоков газа.

Предусмотрено также оснащение испарителя индикатором расхода V анестетика и концентрации С испарителя в зависимости от свежего газотока F во время индукции испаритель анестетиков, патент № 2436600 1 и поддержания испаритель анестетиков, патент № 2436600 2 анестезии согласно соотношению Vиспаритель анестетиков, патент № 2436600 ka(C1 F1 испаритель анестетиков, патент № 2436600 1+C2 F2 испаритель анестетиков, патент № 2436600 2), где ka=0,0416 M/испаритель анестетиков, патент № 2436600 ; M, испаритель анестетиков, патент № 2436600 - молекулярная масса и плотность жидкого анестетика.

Медико-технический результат патентуемого изобретения заключается в следующем:

- повышается стабильность дозирования в широких диапазонах концентраций анестетика (включая севофлюран до 8 об.%) и расходов газа (от 0,2 до 15 л/мин);

- снижается масса (в 3 раза) и габариты изделия;

- повышается качество и безопасность анестезии благодаря стабильности дозирования и дополнительного контроля концентрации испарителя по расходу анестетика в зависимости от свежего газотока во время индукции и поддержания анестезии;

- обеспечивается удобное размещение ингаляционной аппаратуры вблизи пациента благодаря миниатюрности испарителя;

- обеспечивается качественная анестезия даже при отсутствии источников сжатого кислорода высокого давления, благодаря относительно низкому сопротивлению испарителя.

Сущность изобретения поясняется описанием примера конструктивной реализации патентуемого испарителя и чертежами, на которых представлено:

Фиг.1-2 - вертикальное и горизонтальное сечения испарителя;

Фиг.3 - теплообменник;

Фиг.4 - индикатор расхода анестетика и концентрации испарителя;

Фиг.5 - залив и слив анестетика.

Патентуемый испаритель анестетиков содержит камеру 1 анестетика 2 с набором испарительных элементов из капилляроактивного материала, термостабилизатор с жидкостью и газораспределительное устройство с термокомпенсатором 3, расположенным вдоль горизонтальной оси байпаса (Фиг.1, 2). Термостабилизатор выполнен в виде набора баллонов с цетаном (гексадеканом) 4, относящимся к парафинам нефтяным жидким фракций С14-С17. Внешние стенки баллонов обернуты капилляроактивным материалом 5 (пористым металлом). Температура затвердевания (кристаллизации) цетана составляет 17°С (давление насыщенных паров севофлюрана при этой температуре около 18 кПа), т.е. выше нижнего предела рабочих температур испарителя. Количество цетана 4 в баллонах выбрано достаточным (порядка 100 мл) для поддержания температуры в камере 1 не ниже 17°С при максимальной концентрации и газотоке во время индукции анестезии.

Испаритель снабжен теплообменником 6 (Фиг.1, 3), вход 7 которого соединен с источником газа, а выход 8 - с входом 9 газораспределительного устройства. Теплообменник расположен под дном 10 камеры 1, выполнен в виде плоского лабиринтного канала и его гидромеханическое сопротивление сопоставимо с сопротивлением газораспределительного устройства (порядка 100 Па при расходе 10 л/мин).

Баллоны 11 термостабилизатора совмещены с испарительными элементами и расположены на расстоянии друг от друга и симметрично по обе стороны корпуса 12 газораспределительного устройства. Дополнительные баллоны 13 термостабилизатора размещены на периферийных участках камеры 1 в эпицентре траекторий вторичных потоков газа и также обернуты пористым металлом 5. Пористый металл 5 прикреплен к «теплым» стенкам баллонов 11, 13 и камеры 1 конденсационной пайкой с образованием оптимального зазора порядка 50-100 мкм для максимальной подачи жидкого анестетика к поверхности испарения.

Испаритель оснащен индикатором расхода V анестетика и концентрации С испарителя в зависимости от свежего газотока F во время индукции испаритель анестетиков, патент № 2436600 1 и поддержания испаритель анестетиков, патент № 2436600 2 анестезии согласно соотношению Vиспаритель анестетиков, патент № 2436600 ka(C1 F1 испаритель анестетиков, патент № 2436600 12 F1 испаритель анестетиков, патент № 2436600 2), где ka=0,0416 M/испаритель анестетиков, патент № 2436600 ; M, испаритель анестетиков, патент № 2436600 - молекулярная масса и плотность жидкого анестетика. Индикатор может быть выполнен в виде таблицы (Фиг.4), номограммы или микрокалькулятора, которые могут быть прикреплены к корпусу испарителя).

Испаритель анестетиков работает следующим образом.

Газ от внешнего источника высокого (баллоны) или низкого давления (оксигенатор, аппарат ИВЛ с ручным или механическим приводом) проходит через лабиринтный канал теплообменника 6 под дном 10 камеры 1 и охлаждается до температуры жидкого анестетика 2. Затем большая часть газа проходит через байпас газораспределительного устройства и охлаждает термокомпенсатор 3 также практически до температуры анестетика менее чем за 1 мин. Вторая, меньшая часть газа, поступает в камеру 1. При уменьшении температуры испарителя и соответствующем снижении равновесной концентрации анестетика термокомпенсатор 3 уменьшает проходное сечение байпаса, увеличивая относительную долю газа, поступающего в камеру 1, и стабилизируя в итоге выходную концентрацию анестетика. При увеличении температуры соотношение потоков газа автоматически корректируется в обратную сторону.

Вторая часть газа переходит из входной части камеры 1 в выходную, растекаясь тонким слоем между поверхностями испарения пористого металла 5 баллонов 11 и внутренней стенки камеры 1, насыщается до равновесной концентрации анестетика, а затем разбавляется на выходе испарителя основным потоком газа до требуемой концентрации.

При максимальной концентрации и расходе за счет кинетической энергии газа и градиента давления насыщенных паров анестетика (вследствие температурного градиента) в периферийных участках камеры 1 возникают вторичные потоки вокруг дополнительных баллонов 13, обеспечивая дополнительное испарение анестетика.

Жидкий анестетик поступает к поверхностям испарения по капиллярам (порядка 10 мкм) пористого металла 5, а также через щелевые зазоры (порядка 50-100 мкм) за счет сил поверхностного натяжения анестетика. Тепло к поверхностям испарения поступает из окружающей среды через теплопроводные стенки и дно 10 камеры 1, а при относительно больших концентрациях и потоках дополнительное тепло поступает из баллонов 11, 13 по мере охлаждения и последующей кристаллизации цетана 4. При этом средняя температура в камере 1 не опускается ниже 17°С при максимальной концентрации и газотоке во время индукции анестезии. При поддержании анестезии тепловая нагрузка, пропорциональная произведению концентрации на газоток, падает на порядок, как видно из табл. Фиг.4 (в случае сефофлюрана в 24 раза). При этом цетан 4 вновь расплавляется и нагревается до комнатной температуры, аккумулируя тепло.

Перед началом операции проверяют наличие анестетика 2 в испарителе по уровнемерному стеклу с точностью ±5 мл и, при необходимости, доливают его с помощью шприца с точностью ±1 мл (Фиг.5) согласно планируемому расходу в течение анестезии, руководствуясь таблицей или соотношением Vиспаритель анестетиков, патент № 2436600 ka(C1 F1 испаритель анестетиков, патент № 2436600 1+C2 F2 испаритель анестетиков, патент № 2436600 2) Фиг.4, отмечая в журнале операции начальное количество анестетика. После операции оценивают конечное количество анестетика также по уровнемерному стеклу или более точно с помощью шприца (отсасывают анестетик из камеры 1, учитывая остаток в пористом металле 5 и на металлических стенках, всего не более 3 мл). В специальных случаях для более точного определения расхода анестетика используют лабораторные весы. Совпадение планируемого и фактического расхода анестетика в пределах, например, 50% подтверждает адекватное проведение анестезии. Большее расхождение может свидетельствовать о существенных особенностях пациента, оперативного вмешательства, алгоритма действия анестезиолога, технического состояния аппаратуры и инициировать проведение углубленного анализа и необходимых коррекций.

Пример.

Запланирована 2-часовая операция севофлюраном по полузакрытому низкопоточному контуру при концентрации испарителя C1=8 и С2 =2 об. %, газотоке F1=6 и F2=1 л/мин во время индукции испаритель анестетиков, патент № 2436600 1=2 мин и поддержания испаритель анестетиков, патент № 2436600 2=120 мин анестезии. Соответственно заливают 30 мл севофлюрана (по расчету 18,5 мл) в предварительно опорожненную посредством шприца камеру 1 (см. Фиг.5).

Фактически анестезия продолжалась 110 мин при заданных параметрах и расчетный расход анестетика составил 17,5 мл. После операции отсасывают шприцем 10 мл севофлюрана и фактический расход анестетика составляет 20 мл. Расхождение не превышает 2,5 мл или 14%, что свидетельствует об адекватности анестезии и исправности аппаратуры (прежде всего о точности испарителя).

Таким образом, предлагаемый испаритель обеспечивает стабильное дозирование современных анестетиков (изофлюрана, или фторотана-галотана, или энфлюрана, или севофлюрана) в широких диапазонах постоянных и пульсирующих потоков газа от 0,5 до 15 л/мин, температур от 5 до 35°С и давлений окружающей среды. Испаритель экономичен и экологичен (только 3 мл жидкого анестетика остается на фитилях после слива). Его можно эффективно использовать вне (VOC) и внутри (VIC) дыхательного контура. Благодаря низкому сопротивлению (порядка 200 Па) и минимальным размерам (масса 500 г вместо 6-8 кг у лучших аналогов), испаритель совместим с любыми аппаратами ИВЛ и может работать также от источников кислорода низкого давления (оксигенаторов) как в стационаре (больницы и госпитали), так и в полевых условиях (МЧС, скорая помощь, военно-полевая хирургия, ветеринария).

Класс A61M16/01 специально предназначенные для анестезии

способ анестезии при операциях по поводу опухолей головы и шеи у детей -  патент 2504409 (20.01.2014)
дозатор жидких анестетиков -  патент 2498823 (20.11.2013)
наркозно-дыхательный аппарат -  патент 2497552 (10.11.2013)
способ комбинированной общей анестезии в сочетании с блокадой глубокого и поверхностного шейных сплетений при каротидной эндартерэктомии или резекции внутренней сонной артерии при патологической ее деформации -  патент 2493884 (27.09.2013)
индикаторное средство и способ контроля пневмостаза в торакальной хирургии -  патент 2489971 (20.08.2013)
способ анестезиологического обеспечения при хирургических вмешательствах у больных с концевой трахеостомой -  патент 2489174 (10.08.2013)
способ проведения анестезии при рентгенэндоваскулярных операциях у детей на сердце и крупных сосудах (варианты) -  патент 2485980 (27.06.2013)
дыхательный аппарат и способ эксплуатации дыхательного аппарата -  патент 2477152 (10.03.2013)
аппарат ингаляционного наркоза -  патент 2466749 (20.11.2012)
способ диагностики нарушений оксигенации крови в процессе искусственной вентиляции легких -  патент 2457781 (10.08.2012)
Наверх