фильтрующий материал для тонкой очистки газов и способ получения

Классы МПК:B01D39/16 из органического материала, например синтетических волокон 
B01D53/02 адсорбцией, например препаративной газовой хроматографией 
B82B3/00 Изготовление или обработка наноструктур
Автор(ы):, ,
Патентообладатель(и):Федеральное государственное унитарное предприятие "Научно-исследовательский физико-химический институт им. Л.Я. Карпова" (RU),
Московская государственная академия тонкой химической технологии им. М.В. Ломоносова (МИТХТ) (RU)
Приоритеты:
подача заявки:
2009-11-06
публикация патента:

Изобретение относится к производству микроволокнистых материалов, используемых для очистки газов. Предложен фильтрующий материал, который содержит микроволокна из полисульфона диаметром 5-10 мкм и нановолокна из полидифениленфталида диаметром 300-500 нм при массовом отношении волокон из полидифениленфталида к волокнам из полисульфона, равном 1:(5-25). Предложен также способ получения материала методом электроформования волокон из раствора, который включает осаждение на электроде микроволокон с диаметром 5-10 мкм из системы полисульфон-дихлорэтан-электролит, и одновременное осаждение на электроде нановолокон с диаметром 300-500 нм из системы полидифениленфталид-циклогексанон-диметилформамид-электролит. Изобретение позволяет повысить эффективность очистки газов при повышенных температурах. 2 н. и 1 з.п. ф-лы, 1 табл.

Формула изобретения

1. Фильтрующий материал для тонкой очистки газов, содержащий смесь волокон различного диаметра, полученных методом электроформования из раствора, в том числе микроволокна из полисульфона диаметром 5-10 мкм, отличающийся тем, что он дополнительно содержит нановолокна из полидифениленфталида диаметром 300-500 нм при массовом отношении волокон из полидифениленфталида к волокнам из полисульфона, равном 1:(5-25).

2. Способ получения фильтрующего материала для тонкой очистки газов методом электроформования волокон из раствора, включающий осаждение на электроде микроволокон с диаметром 5-10 мкм из системы полисульфон-дихлорэтан-электролит, отличающийся тем, что на электроде одновременно осаждают нановолокна с диаметром 300-500 нм из системы полидифениленфталид-циклогексанон-диметилформамид-электролит при массовом отношении волокон из полидифениленфталида к волокнам из полисульфона, равном 1:(5-25).

3. Способ по п.2, отличающийся тем, что осаждение волокон производят из раствора, содержащего 5-25 мас.% полисульфона в дихлорэтане и электролитическую добавку в количестве 0,01-0,2% от массы раствора, выбранную из галогенидов тетраэтиламмония и тетрабутиламмония, и из раствора, содержащего 5-25 мас.% полидифениленфталида в растворе, содержащем смесь циклогексанона и диметилформамида в объемном отношении 1:1 и электролитическую добавку в количестве 0,01-0,2% от массы раствора, выбранную из галогенидов тетраэтиламмония и тетрабутиламмония, при этом осаждение волокон из упомянутых растворов осуществляют одновременно с образованием смеси волокон.

Описание изобретения к патенту

Изобретение относится к области получения фильтрующих материалов из микроволокон и нановолокон, и их использования для тонкой очистки воздуха и газовых сред от дисперсных частиц, в том числе радиоактивных аэрозолей при повышенных температурах.

Известен сорбционно-фильтрующий материал для бактериальных фильтров на основе нетканого материала из волокон с диаметром 0,1-10 мкм, выполненных путем электоформования из раствора в органическом растворителе политрифторстирола, или полисульфона, или поли-2,6-диметилфениленоксида, или поли-2,6-дифенилфениленоксида, или полидифениленфталида, или полиоксидифениленфталида (RU 2055632, 07.09.2000).

Известный материал предназначен для бастериальных фильтров и не обеспечивает высокой эффективности при очистке от радиоактивных аэрозолей.

Наиболее близким по технической сущности и достигаемому результату является фильтрующий материал для тонкой очистки газов, содержащий смесь волокон из полисульфона с диаметром 0,1-0,5 мкм и с диаметром 5-10 мкм, полученных путем электростатического формования из раствора, при этом количество волокон с диаметром 0,1-0,5 мкм и с диаметром 5-10 мкм соответствует их массовому соотношению (1:25)-(1:5). Известен также способ получения упомянутого материала путем осаждения на электроде микроволокон различного диаметра из раствора полисульфона в органическом растворителе в присутствии электролитической добавки (RU 2270714, 27.02.2006).

Однако известный материал обладает недостаточной эффективностью в течение длительного времени при температурах выше 120°С из-за деформаций волокон с диаметром 0,1-0,5 мкм.

Задачей настоящего изобретения является разработка фильтрующего материала, пригодного для эффективной очистки газовых сред от аэрозолей, в том числе радиоактивных при температурах до 150°С.

Поставленная задача решается описываемым фильтрующим материалом для тонкой очистки газов, который содержит смесь волокон различного диаметра, полученных методом электроформования из раствора, микроволокна из полисульфона диаметром 5-10 мкм, и нановолокна из полидифениленфталида диаметром 300-500 нм при массовом отношении волокон из полидифениленфталида к волокнам из полисульфона, равном 1:(5-25).

Поставленная задача решается также описываемым способом получения фильтрующего материала для тонкой очистки газов методом электроформования волокон из раствора, включающим осаждение на электроде микроволокон с диаметром 5-10 мкм из системы полисульфон-дихлорэтан-электролит, и осаждение на электроде нановолокон с диаметром 300-500 нм мкм из системы полидифениленфталид-циклогексанон-диметилформамид-электролит при массовом отношении волокон из полидифениленфталида к волокнам из полисульфона, равном 1:(5-25).

Предпочтительно, осаждение волокон производят из раствора, содержащего 5-25 мас.% полисульфона в дихлорэтане и электролитическую добавку в количестве 0,01-0,2% от массы раствора, выбранную из галогенидов тетраэтиламмония и тетрабутиламмония, и из раствора, содержащего 5-25 мас.% полидифениленфталида в растворе, содержащем смесь циклогексанона и диметилформамида в объемном отношении 1:1 и электролитическую добавку в количестве 0,01-0,2% от массы раствора, выбранную из галогенидов тетраэтиламмония и тетрабутиламмония, при этом осаждение волокон из упомянутых растворов осуществляют одновременно с образованием смеси волокон.

В объеме совокупности вышеуказанных признаков полученный материал не теряет своей эффективности при работе в условиях высоких температур вплоть до 150°С.

Упомянутый технический результат достигается по следующим причинам.

Нановолокна с диаметром менее 1 мкм обладают пониженной теплостойкостью, снижающейся по мере уменьшения диаметра, поэтому для их получения был использован более термостойкий полимер - полидифениленфталид с теплостойкостью более 300°C.

Ниже приведены конкретные примеры осуществления заявленного способа получения предложенного фильтрующего материала, а также фильтрующие характеристики полученного материала.

Пример 1

Приготавливают 15% раствор полисульфона в ДХЭ с добавкой тетрабутиламмония йодида 0,01 мас.% с вязкостью 7 П и электропроводностью 5·10 -5 См/см для получения волокон с диаметром 7 мкм.

Приготавливают 17 мас.% раствора полидифениленфталида в смеси ЦГН и ДМФА в соотношении 1:1 с добавкой тетрабутиламмония йодида 0,02 мас.% с вязкостью 2 П и электропроводностью 2·10 -5 См/см для получения волокон с размером 400 нм.

Эти растворы продавливают через соответствующие дозаторы, помещенные в поле высокого напряжения 80 кВ, и получают методом электроформования на осадительном электроде волокнистый фильтрующий материал со смесью волокон 7 мкм и 400 нм с их массовым соотношением 10/1 соответственно.

Полученный материал выдерживает температуру воздуха 150°C в течение 50 часов, при этом эффективность фильтрации по частицам 0,3 мкм в разряженном состоянии составляет 99,99% при гидродинамическом сопротивлении 52 Па и линейной скорости фильтрации 1 см/с.

Полученным материалом снаряжают фильтр, содержащий рамочные элементы и сепараторы, и испытывают его в реальных условиях на АЭС.

Примеры при других заявленных параметрах сведены в таблицу.

фильтрующий материал для тонкой очистки газов и способ получения, патент № 2429048

Как видно из приведенных данных, предложенный материал является высокоэффективным средством для очистки газов от радиоактивных аэрозолей, не теряет своей эффективности в условиях длительной эксплуатации при температурах до 150°С и может быть рекомендован к использованию в атомной промышленности.

Класс B01D39/16 из органического материала, например синтетических волокон 

способ получения ультратонких полимерных волокон -  патент 2527097 (27.08.2014)
способ получения антибиотического покрытия на фильтрующем материале -  патент 2525486 (20.08.2014)
фильтрующий термостойкий нановолокнистый материал и способ его получения -  патент 2524936 (10.08.2014)
фильтровальный нетканый волокнистый материал для микроагрегатной и лейкофильтрации гемотрансфузионных сред -  патент 2522626 (20.07.2014)
способ получения нетканого волокнистого материала и нетканый материал -  патент 2493006 (20.09.2013)
способ получения фильтрующего полимерного материала и фильтрующий материал -  патент 2492912 (20.09.2013)
способ разделения смесей двух несмешивающихся жидкостей типа масло-в-воде -  патент 2492905 (20.09.2013)
фильтрующий материал -  патент 2478005 (27.03.2013)
способ изготовления электретных изделий, основанный на использовании зета-потенциала -  патент 2472885 (20.01.2013)
многослойный нетканый фильтрующий материал -  патент 2465034 (27.10.2012)

Класс B01D53/02 адсорбцией, например препаративной газовой хроматографией 

модульная установка очистки воздуха от газовых выбросов промышленных предприятий -  патент 2529218 (27.09.2014)
способ очистки природного газа и регенерации одного или большего числа адсорберов -  патент 2525126 (10.08.2014)
способ адсорбции кочетова -  патент 2524972 (10.08.2014)
горизонтальный адсорбер кочетова -  патент 2524229 (27.07.2014)
адсорбер для очистки воздуха от паров ртутьсодержащих веществ -  патент 2523803 (27.07.2014)
горизонтальный адсорбер кочетова -  патент 2521928 (10.07.2014)
сорбент на основе сшитого полимера-углерода для удаления тяжелых металлов, токсичных материалов и диоксида углерода -  патент 2520444 (27.06.2014)
поглотитель хлористого водорода -  патент 2519366 (10.06.2014)
способ определения содержания труднолетучих органических соединений в газообразной среде, композиция в качестве сорбента, применение сорбента -  патент 2510501 (27.03.2014)
вертикальный адсорбер кочетова -  патент 2508932 (10.03.2014)

Класс B82B3/00 Изготовление или обработка наноструктур

Наверх