способ нанесения комбинированного защитного покрытия на стальные детали

Классы МПК:C25D5/10 нанесение покрытий несколькими слоями одинаковых или различных металлов
C25D5/50 термообработкой
Автор(ы):, , , , ,
Патентообладатель(и):Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) (RU)
Приоритеты:
подача заявки:
2010-08-18
публикация патента:

Изобретение относится к области машиностроения, а именно к способам получения комбинированных покрытий для защиты от коррозии деталей из низко- и среднелегированных сталей различной прочности. Способ нанесения комбинированного защитного покрытия на стальные детали включает последовательное нанесение цинкового покрытия из электролита, содержащего цинк сернокислый и натриевую соль, и оловянного покрытия из раствора, содержащего соль олова, и последующую термическую обработку, при этом в цинковый электролит дополнительно вводят аммоний хлористый, а в качестве натриевой соли натрий уксуснокислый, диспергатор НФ жидкий при рН электролита 3,5-5, в раствор оловянирования дополнительно вводят калий пирофосфорнокислый, аммоний сернокислый, а в качестве соли олова используют олово двухлористое при рН раствора 9,2-9,8, термическую обработку проводят при температуре ниже температуры плавления олова. Техническим результатом является получение на стальных деталях разной конфигурации и различной прочности, в том числе и высокопрочных, комбинированного покрытия, обладающего повышенной коррозионной стойкостью и защитными свойствами. 3 з.п. ф-лы, 2 табл.

Формула изобретения

1. Способ нанесения комбинированного защитного покрытия на стальные детали, включающий последовательное нанесение цинкового покрытия из электролита, содержащего цинк серно-кислый и натриевую соль, и оловянного покрытия из раствора, содержащего соль олова, и последующую термическую обработку, отличающийся тем, что в цинковый электролит дополнительно вводят аммоний хлористый, диспергатор НФ жидкий, а в качестве натриевой соли - натрий уксусно-кислый, при рН электролита 3,5-5 в раствор оловянирования дополнительно вводят калий пирофосфорно-кислый, аммоний серно-кислый, а в качестве соли олова используют олово двухлористое, при рН раствора 9,2-9,8 термическую обработку проводят при температуре ниже температуры плавления олова.

2. Способ по п.1, отличающийся тем, что нанесение цинкового покрытия осуществляют при температуре 18-25°С и катодной плотности тока 0,7-3 А/дм2 из электролита следующего состава, г/л:

цинк серно-кислый 70-100
аммоний хлористый200-250
натрий уксусно-кислый 35-40
диспергатор НФ жидкий (марки А) 50-100 мл/л

3. Способ по п.1, отличающийся тем, что нанесение оловянного покрытия осуществляют при температуре 18-25°С и времени обработки 15-25 мин из раствора следующего состава, г/л:

олово двухлористое 8-12
калий пирофосфорно-кислый 190-220
аммоний серно-кислый4-6

4. Способ по п.1, отличающийся тем, что термическую обработку проводят по двухступенчатому режиму, причем первую ступень проводят при 140-160°С и времени 1-4 ч, а вторую - при 180-200°С и времени 2-24 ч.

Описание изобретения к патенту

Изобретение относится к области машиностроения, а именно к способам получения комбинированных покрытий для защиты от коррозии деталей из низко- и среднелегированных сталей различной прочности. Способ пригоден для защиты от коррозии стальных деталей, в том числе с точными допусками и/или имеющих резьбу.

В изделиях авиационной техники для защиты от коррозии деталей из низко- и среднелегированных конструкционных сталей применяется кадмиевое покрытие, являющееся анодным по отношению к стали. Для нанесения кадмиевого покрытия на стали средней прочности применяются различные типы электролитов. Нанесение кадмиевого покрытия на высокопрочные стали осуществляется в малонаводороживающем хлористоаммонийном электролите - единственном из всех типов электролитов кадмирования, рекомендованном для кадмирования деталей из высокопрочных сталей.

Известно, что высокопрочные стали чувствительны к водородному и коррозионному растрескиванию. В связи с этим используются специальные растворы и электролиты, а также режимы при нанесении покрытий, обеспечивающие минимальное наводороживание (Максимчук В.П., Половников С.П. «Водородное растрескивание высокопрочных сталей после нанесения гальвано-химических покрытий». М.: Энергоатомиздат, 2002. 293 с., Ажогин Ф.Ф. «Коррозионное растрескивание и защита высокопрочных сталей». М.: Металлургия, 1974. 245 с.).

В связи с токсичностью соединений кадмия возникла необходимость в замене кадмия при защите от коррозии не только деталей из сталей средней прочности, но и из высокопрочных конструкционных сталей (Виноградов С.С.«Экологически безопасное гальваническое производство». М.: Глобус, 1998. С.7-13).

В качестве альтернативы кадмиевому покрытию могут быть применены покрытия сплавами на основе цинка (цинк-никель, цинк-олово, цинк-кобальт и др.), которые обладают более высокой коррозионной стойкостью, чем покрытия чистым цинком, либо многослойные покрытия.

В промышленности известны способы получения легированного гальванического цинкового покрытия такими металлами, как никель, олово, кобальт, непосредственно из электролитов, что позволяет увеличить защитную способность цинкового покрытия.

Известен способ нанесения гальванического покрытия на стальной лист сплавом олово-цинк. Нанесение гальванического покрытия проводили в течение 10-60 минут в ванне, содержащей амфотерное поверхностно-активное вещество, водорастворимую соль двухвалентного олова, водорастворимую цинковую соль. При этом стальной лист являлся катодом, а в качестве анода использовали сплав олово-цинк, плотность катодного тока составляла 0,2-5 А/дм 2 (патент РФ № 2114937).

Известен способ получения защитного покрытия в щелочном цинкатном электролите, содержащем комплексное соединение олова с многоатомными органическими кислотами. Электролиз проводится при плотности катодного тока 1-3 А/дм2 и температуре 18-25°C. Покрытие содержит от 0,01-1% олова. Покрытие обрабатывается в фосфатном растворе с повышенной концентрацией компонентов при температуре 75-85°C и времени 5-10 минут (патент РФ № 2177055).

Известен способ получения многослойного покрытия, состоящего из последовательно нанесенных слоев покрытий сплавами цинк-никель и олово-цинк, содержащих 10-16% никеля и 8-35% цинка соответственно. Плотность катодного тока в обоих электролитах изменяется в диапазоне 1-3 А/дм2, при этом в электролите для получения покрытия сплавом цинк-никель в качестве анодов используют никель, а при осаждении слоя покрытия - сплав олово-цинк. Суммарная толщина покрытия составляет 10-15 мкм (патент США № 5989735).

Недостатками известных способов получения защитных покрытий являются сложность поддержания необходимой концентрации легирующего компонента в электролите и невозможность получения однородных по составу покрытий на сложнопрофилированных деталях вследствие неравномерного распределения плотности тока на различных участках поверхности, что может привести к электрохимической гетерогенности и вызвать усиление коррозии на различных участках детали.

Наиболее близким по технической сути к заявляемому является способ нанесения комбинированного защитного покрытия на стальной лист, включающий нанесение гальванического цинкового покрытия из электролита, содержащего ионы цинка и последующее нанесение химического или электрохимического оловянного покрытия путем погружения в раствор, содержащий ионы олова. После нанесения слоев цинка и олова покрытие проходит обычную обработку в растворе бихромата натрия и последующую термообработку при температуре выше температуры плавления олова (232-400°C) в течение короткого времени 0,5-10 сек.

Нанесение цинкового покрытия осуществляют при повышенной температуре в одном из предложенных электролитов (состав г/л):

- ZnSO4·7H 2O - 50, H2SO4 - 3, ПАВ - 2, pH=1,6, температура 40°C, плотность катодного тока 10 А/дм2 ;

- ZnSO4·7H2O - 50, фенолсульфокислота - 50, ПАВ - 4 рН=0,9, температура 50°C, плотность катодного тока 15 А/дм2;

- ZnCl2 - 300, NaCl - 45, NaF - 25, NaHF2 - 50 pH=1,8, температура 55°C, плотность катодного тока 20 А/дм2.

Нанесение слоя олова осуществляют химическим способом из кислых растворов при повышенной температуре и малом времени обработки (состав растворов г/л):

- SnSO4 - 5, H2SO4 - 3, ПАВ - 2, рН=1,1, температура 40°C, время выдержки 3 сек;

- SnCl2·2H2O - 75, NaCl - 45, NaF - 25, NaHF2 - 50 pH=1,8, температура 55°C, время выдержки 0,7 сек (патент Канады № 1211407).

Недостатками данного способа является то, что он пригоден только для нанесения покрытия на листовые детали, не может быть реализован для деталей сложной конфигурации, в том числе имеющих резьбу, изготовленных из конструкционных сталей, в том числе высокопрочных, при этом не учитывается наводороживание стальной основы, обладает низкой защитной способностью.

Технической задачей предлагаемого изобретения является разработка способа, обеспечивающего формирование на стальных деталях комбинированного защитного покрытия с повышенной коррозионной и защитной способностью, имеющего анодный характер защиты. Способ позволит наносить защитное покрытие на детали различной конфигурации, в том числе имеющие резьбовые соединения.

Для решения поставленной задачи предложен способ нанесения комбинированного защитного покрытия на стальные детали, включающий последовательное нанесение цинкового покрытия из электролита, содержащего цинк сернокислый, натриевую соль, нанесение оловянного покрытия из раствора, содержащего соль олова, и последующую термическую обработку, отличающийся тем, что в цинковый электролит дополнительно вводят аммоний хлористый, натрий уксуснокислый, диспергатор НФ жидкий, при pH раствора 3,5-5, для нанесения оловянного покрытия в раствор дополнительно вводят калий фосфорнокислый, аммоний сернокислый, а в качестве соли олова используют олово двухлорное при pH раствора 9,2-9,8, термообработку проводят в две ступени при температуре ниже температуры плавления олова.

Нанесение цинкового покрытия осуществляют при температуре 18-25°C и катодной плотности тока 0,7-3 А/дм2 в электролите следующего состава (г/л):

цинк сернокислый 70-100
аммоний хлористый200-250
натрий уксуснокислый 35-40
диспергатор НФ жидкий (марки А) 50-100 мл/л

Нанесение оловянного покрытия проводят при температуре 18-25°C в течение 15-25 мин путем погружения в раствор следующего состава (г/л):

олово двухлористое 8-12
калий пирофосфорнокислый 190-220
аммоний сернокислый4-6

Термическую обработку проводят в воздушных печах по режиму: 1-я ступень: 140-160°C 1-4 ч, 2-я ступень 180-200°C 2-24 ч.

Стальные детали с нанесенным комбинированным покрытием обрабатывают в стандартных растворах хроматирования или фосфатирования.

Электролит цинкования, содержащий хлористый аммоний и диспергатор НФ, является комплексным. Применение этого электролита позволяет получать более равномерные осадки цинка по всей площади детали. Такое сочетание компонентов электролита и режимов нанесения позволяет повысить рассеивающую и кроющую способность электролита. Катодная плотность тока выбирается, исходя из прочности стали, и составляет для деталей из углеродистых сталей низкой и средней прочности 0,7-3 А/дм2. Для высокопрочных сталей интервал плотностей тока составляет 0,7-1 А/дм2, в этом интервале плотностей тока катодный выход цинка по току в электролите максимальный.

Щелочной раствор для химического получения оловянного покрытия (pH 9,2-9,8) позволяет получать равномерные осадки оловянного покрытия по всей площади цинкового покрытия. Толщина оловянного покрытия до 1 мкм.

Время нагрева второй ступени термообработки выбирается с учетом предела прочности стали, из которой изготовлена деталь, и для высокопрочных сталей время обезводороживания (2 ступень термообработки) не менее 24 часов.

Пример 1

Детали типа штуцер из стали средней прочности 30ХГСА электрохимически обезжирили в стандартном фосфатно-щелочном растворе и затем активировали в растворе соляной кислоты. После промывки в холодной воде на образцы нанесли цинковое покрытие толщиной 6 мкм из электролита следующего состава, г/л:

цинк сернокислый 85
аммоний хлористый200
натрий уксуснокислый 40
диспергатор НФ жидкий (марки А) 100 мл/л
pH раствора4,5

при температуре 20°C и плотности катодного тока 3 А/дм2.

После промывки в холодной воде оцинкованные стальные детали были помещены в раствор химического оловянирования состава (г/л):

олово двухлористое 10
калий пирофосфорнокислый 200
аммоний сернокислый5
pH раствора 9,8

при температуре 20°C и времени выдержки 20 мин.

После промывки и сушки детали с двухслойным цинковым и оловянным покрытиями были помещены в воздушную печь при температуре 150°C в течение 3 часов, далее 180°C течение 2 часов.

После термической обработки детали с комбинированным покрытием были активированы в растворе серной кислоты, промыты, подвергнуты дополнительной обработке фосфатированием в стандартном растворе состава (г/л): барий азотнокислый 35, цинк азотнокислый 15, цинк фосфорнокислый 10 при температуре 75°C и времени выдержки 10 минут, с последующей промывкой и сушкой.

Пример 2

Детали типа болт из высокопрочной стали 30ХГСН2А (способ нанесения комбинированного защитного покрытия на стальные   детали, патент № 2427671 в=1800 МПа) после шлифования и обдувки корундовым песком, были химически обезжирены в стандартном фосфатно-щелочном растворе и активированы в растворе соляной кислоты, оцинкованы на толщину 6 мкм из электролита следующего состава, г/л:

цинк сернокислый 100
аммоний хлористый225
натрий уксуснокислый 35
диспергатор НФ жидкий (марки А) 85 мл/л
pH раствора4,5

при температура 20°C и плотности катодного тока 0,7 А/дм2.

После промывки в холодной воде оцинкованные стальные детали были помещены в раствор химического оловянирования состава (г/л):

олово двухлористое 8
калий пирофосфорнокислый 190
аммоний сернокислый 4
pH раствора 9,5

при температуре 20°C и времени выдержки 20 мин.

После промывки в холодной и горячей воде детали с цинковым и оловянным покрытием были помещены в воздушную печь при температуре 140°C в течение 4 часа, далее 200°C в течение 24 часов.

После термической обработки детали с покрытием были активированы в растворе серной кислоты, промыты, подвергнуты дополнительной обработке хроматированием в стандартном растворе состава (г/л): бихромат натрия 20, натрий сернокислый 15, кислота азотная 15 мл/л при температуре 20°C и времени выдержки 10 секунд, с последующей промывкой и сушкой.

Пример 3

Детали типа планки из стали средней прочности 30ХГСА электрохимически обезжирены в стандартном фосфатно-щелочном растворе и затем активированы в растворе соляной кислоты. После промывки в холодной воде на образцы нанесли цинковое покрытие толщиной 6 мкм из электролита следующего состава, г/л:

цинк сернокислый 70
аммоний хлористый250
натрий уксуснокислый 40
диспергатор НФ жидкий (марки А) 50 мл/л
pH раствора4

при температура 20°C и плотности катодного тока 2 А/дм2.

После промывки в холодной и горячей воде оцинкованные стальные детали были помещены в раствор химического оловянирования состава (г/л):

олово двухлористое 12
калий пирофосфорнокислый 220
аммоний сернокислый6
pH раствора 9,5

при температуре 20°C и времени выдержки 15 мин.

После промывки в холодной и горячей воде образцы с цинковым и оловянным покрытием были помещены в воздушную печь при температуре 160°C в течение 3 часов, далее 200°C в течение 2 часов.

После термической обработки детали с покрытием были активированы в растворе серной кислоты, промыты, подвергнуты дополнительной обработке хроматированием в стандартном растворе состава (г/л): бихромат натрия 20, натрий сернокислый 15, кислота азотная 15 мл/л при температуре 20°C и времени выдержки 10 секунд, с последующей промывкой и сушкой.

Для проведения сравнительных коррозионных испытаний были изготовлены листовые образцы и нанесено защитное покрытие по предлагаемому способу толщиной 6 мкм. Проведены сравнительные коррозионные испытания в камере солевого тумана (КСТ) по ГОСТ 9.308 в сравнение с кадмиевым покрытием и по прототипу при постоянном распылении 5% нейтрального раствора хлористого натрия и температуре 35°C в течение 350 ч.

В таблице 1 приведены результаты сравнительных коррозионных испытаний покрытий, сформированных по предлагаемому способу-прототипу, и для сравнения с кадмиевым покрытием. В таблице 2 показана возможность получения защитных покрытий на деталях различной конфигурации и прочности по предлагаемому способу и способу, прототипу.

Таким образом, предлагаемый способ позволяет получать на стальных деталях разной конфигурации и различной прочности, в том числе и высокопрочных, комбинированное защитное покрытие, обеспечивающее повышение коррозионной стойкости и защитных свойств.

Таблица 1
Способ получения покрытия Покрываемая деталь Время появления первых продуктов коррозии покрытия, час Время появления первых продуктов коррозии стали, час
Предлагаемый способБолт способ нанесения комбинированного защитного покрытия на стальные   детали, патент № 2427671 способ нанесения комбинированного защитного покрытия на стальные   детали, патент № 2427671
Штуцер 200 >350
Планка
Листспособ нанесения комбинированного защитного покрытия на стальные   детали, патент № 2427671 способ нанесения комбинированного защитного покрытия на стальные   детали, патент № 2427671
ПрототипЛист 48 90
КадмийБолт способ нанесения комбинированного защитного покрытия на стальные   детали, патент № 2427671 способ нанесения комбинированного защитного покрытия на стальные   детали, патент № 2427671
Штуцер 350 >350
Планка
Листспособ нанесения комбинированного защитного покрытия на стальные   детали, патент № 2427671 способ нанесения комбинированного защитного покрытия на стальные   детали, патент № 2427671

Таблица 2
Способ получения покрытия Возможность получения покрытия на различных деталях
Лист БолтШтуцер Планка
Предлагаемый способ + ++ +
Прототип + -- -
Кадмий + ++ +

Класс C25D5/10 нанесение покрытий несколькими слоями одинаковых или различных металлов

способ формирования износостойких гальванических железных покрытий -  патент 2416679 (20.04.2011)
способ формирования гальванических покрытий -  патент 2275445 (27.04.2006)
способ нанесения многослойных покрытий -  патент 2228972 (20.05.2004)
способ получения покрытий на металлических поверхностях -  патент 2224826 (27.02.2004)
способ меднения алюминия -  патент 2214483 (20.10.2003)
элемент кристаллизатора для непрерывной разливки металлов, способ нанесения покрытия на наружную поверхность охлаждаемой стенки элемента кристаллизатора и способ восстановления серебряного покрытия (варианты) -  патент 2181315 (20.04.2002)
способ нанесения металлических покрытий на изделия из магния и его сплавов -  патент 2150534 (10.06.2000)
способ гальванического меднения стальной проволоки перед волочением -  патент 2081210 (10.06.1997)
металлическая проволока для армирования изделий, изготавливаемых из эластомерного материала, изделие из смеси сетчатых эластомерных материалов, содержащее армирующую металлическую проволоку с покрытием, и автомобильная шина, содержащая армирующую металлическую проволоку с покрытием -  патент 2074269 (27.02.1997)
способ получения цинковых покрытий -  патент 2048615 (20.11.1995)

Класс C25D5/50 термообработкой

способ получения пластичной структуры поверхностного слоя на переднем выступе ствольной коробки стрелкового оружия -  патент 2524268 (27.07.2014)
способ нанесения композиционных электрохимических покрытий -  патент 2482225 (20.05.2013)
способ обработки детали с гальваническим покрытием -  патент 2476626 (27.02.2013)
способ получения прочносцепленных покрытий на основе никеля на металлических деталях -  патент 2389829 (20.05.2010)
способ получения гальванического покрытия сплавами на основе никеля на хромсодержащих материалах -  патент 2355827 (20.05.2009)
способ получения диффузионных покрытий на стали -  патент 2223350 (10.02.2004)
способ получения электроосажденных металлов с повышенными прочностными и пластическими свойствами -  патент 2183697 (20.06.2002)
способ изготовления деталей с твердым электрохимическим хромовым покрытием -  патент 2180022 (27.02.2002)
способ получения термоупрочняемых хромовых покрытий -  патент 2147630 (20.04.2000)
способ обработки изделий из алюминия и его сплавов (варианты) -  патент 2096533 (20.11.1997)
Наверх