способ повышения эффективности антибиотиков

Классы МПК:A61K31/00 Лекарственные препараты, содержащие органические активные ингредиенты
Автор(ы):, ,
Патентообладатель(и):Федеральное государственное образовательное учреждение высшего профессионального образования "Курская государственная сельскохозяйственная академия имени профессора И.И. Иванова" Министерства сельского хозяйства Российской Федерации (RU)
Приоритеты:
подача заявки:
2010-03-22
публикация патента:

Изобретение относится к микробиологии и биотехнологии, в частности к производству антибиотиков. Способ повышения эффективности антибиотиков, заключающийся в том, что проводят детоксикацию и полимеризацию антибиотиков обработкой сначала раствором формалина, а затем раствором этония при определенных условиях, и применяют их в жидком или лиофилизированном состоянии. Вышеописанный способ повышает эффективность антибиотиков. 2 з.п. ф-лы, 2 табл.

Формула изобретения

1. Способ повышения эффективности антибиотиков, заключающийся в том, что проводят детоксикацию и полимеризацию антибиотиков обработкой сначала 0,1-0,2%-ным раствором формалина при 42°С в течение 3-5 суток, а затем 0,1-0,2%-ным раствором этония при 42°С в течение 3-5 суток и применяют их в жидком или лиофилизированном состоянии.

2. Способ по п.1, заключающийся в том, что антибиотики обрабатывают 0,2%-ным раствором формалина и 0,2%-ным раствором этония и применяют в жидком состоянии.

3. Способ по п.1, заключающийся в том, что антибиотики обрабатывают 0,1%-ным раствором формалина и 0,1%-ным раствором этония, а затем подвергают их лиофилизации.

Описание изобретения к патенту

Изобретение относится к микробиологии и биотехнологии, в частности к производству антибиотиков, в том числе бета-лактамовых.

В результате исследований выявлено, что снижение эффективности антибиотиков связано с их инактивацией бактериальными ферментами - бета-лактамазами, продуцируемыми бактериальными клетками (стафилококками и др.), повышением выведения антибиотиков из клетки, мутациями рибосомальных белков и соответственно подавлением синтеза бактериальных белков и в целом торможения взаимодействия т-РНК с рибосомами (Никитин А.В. Титециклин: антимикробное действие и химиотерапевтическая эффективность // Антибиотики и химиотерапия, 2009, 54; 1-2. С.63-65; Соколова Г.Б., Краснов В.А. Новый противотуберкулезный препарат Рифалекс // Антибиотики и химиотерапия, 2009, 54; 1-2. С.38-41).

Повышение химиотерапевтической активности антибиотиков проводится комбинацией разных групп антибиотиков, в том числе с клавулановой кислотой (антибиотик, полученный в 1976 году из продукта метаболизма гриба Streptomyces clavuligerus), а также введением в их химическую структуру фтора, пиперазинового радикала и совместное применение с лимонной, янтарной и изоянтарной кислотами и их солями - сукцинатами, а также пробиотиками (Андреева Н.Л., Войтенко В.Д. Повышение эффективности химиопрепаратов с помощью органических кислот // Международный вестник ветеринарии, 2004, № 1. - С.55-58; Шевелева М.А., Раменская Г.В. Современные представления о применении пробиотических средств при антибиотикотерапии // Антибиотики и химиотерапия, 2009, 54; 3-4. - С.61-64).

Однако на фоне снижения бактериальной резистентности, повышения токсичности и особенно нефротоксичности антибиотиков арсенал использования средств антибактериальной терапии резко сужается. В России пока не выявлены патогены, резистентные к метициллину, ванкомицину, линезолиду, но в Западной Европе выделено до 20%, а в США - до 55% устойчивых к указанным антибиотикам микроорганизмов. Поэтому появление резистентных микроорганизмов в других регионах мира и в России является вопросом времени.

Современные подходы совершенствования изготовления антибиотиков нуждаются в иных направлениях, так как существующий потенциал разработки инновационных антибактериальных препаратов ограничен, и принципиально новых антибиотиков создать не удается.

Создание новых лекарственных форм и комбинаций антибиотиков не обеспечивает качественного прорыва и снижения токсичности в фармокинетике антимикробных препаратов.

Известен способ создания более эффективного антибиотика комбинацией амоксициллина с клавуланатом (Карпов О.И. Флемоклавсолютат - новая лекарственная форма амоксициллина/клавуланата // Клиническая фармакология и терапия. - 2006. - 15. - № 4. - С.1-4).

Несмотря на замену ампициллина на амоксициллин, обладающий более эффективным бактерицидным действием и проникновением в ткани и жидкости организма, и последующее создание ряда комбинированных антибиотиков - аугментина, сулациллина и т.д., основные недостатки, присущие антибиотикам, сохранились. Это - токсичность, появление лекарственноустойчивых видов микроорганизмов, депрессивное их воздействие на иммунную систему организма, дороговизна и дефицитность из-за прекращения изготовления в РФ антибиотиков (Медуницын Н.В. Биопрепараты. 2006, № 4. С.2-3).

Для устранения указанных недостатков, для повышения бактерицидной эффективности антибиотиков, снижения их токсичности и аллергизации организма, повышения их устойчивости к действию бактериальных ферментов за счет создания у них стабильной структуры предлагается полимеризация и детоксикация антибиотиков двумя детоксикаторами - вначале 0,15±0,05% раствором формалина при 40,0±2,0°С в течение 3-5 суток, а затем 0,15±0,05% раствором этония (бисчетвертичного аммониевого соединения) при 40,0±2,0°С в течение 3-5 суток из расчета 100-150 мг/мл антибиотика.

Правомерность использования формалина и этония для полимеризации и детоксикации антибиотиков основана на производстве и применении анатоксинов, толерогенов (аллергоидов), инактивированных вирусных вакцин.

Однако сведений об использовании этих соединений при изготовлении антибиотиков в патентной и научной литературе не обнаружено.

Использование этония в качестве полимеризатора и детоксикатора доказало свою эффективность при получении ряда инактивированных вакцин, разработанных авторами заявляемого способа (RU 2360697, 2371197, 2372937, 2377013, 2377014, 2377016). Этоний обладает инактивирующим действием на токсины ряда микроорганизмов и стимулирует заживление ран, поэтому используется при лечении трофических язв, маститов, стоматитов, кератитов и т.д. (Покровский В.И. Медицинская микробиология, 1999. С.138). При этом этоний менее токсичен и не обладает канцерогенными свойствами в отличие от формалина. При получении вакцин формалин и этоний практически подавляют индукцию экзотоксинов и обеспечивают их детоксикацию.

Изучение действия формалина и этония на антибиотики показало их эффективность в усилении бактерицидного действия антибиотиков, повышении их резистентности к ферментам, вырабатываемым патогенными микроорганизмами, снижении токсичности самих антибиотиков.

На основании изученных свойств был разработан режим полимеризации и детоксикации, дозировка формалина и этония и предложен способ повышения эффективности антибиотиков.

Цель изобретения - повышение эффективности антибиотиков на основе усиления их бактерицидных свойств, снижения токсичности, усиления резистентности антибиотиков к бета-лактамным ферментам бактерий. В результате повысится эффективность терапии инфекционных болезней животных.

Поставленная цель достигается полимеризацией и детоксикацией антибиотиков вначале 0,15±0,05% раствором формалина при 40,0±2,0°С в течение 3-5 суток, а затем 0,15±0,05% раствором этония при 40,0±2,0°С в течение 3-5 суток из расчета 100-150 мг/мл антибиотика. При таком способе детоксикации и полимеризации концентрация антибиотика сохраняется, а содержание формалина и этония снижается в 10 и более раз, а при изготовлении лиофилизированных препаратов полностью утрачивается.

Способ заключается в том, что эффективность антибиотиков повышают полимеризацией и детоксикацией при 42°С в течение 3-5 суток сначала раствором формалина, а затем в том же режиме раствором этония. При этом в антибиотики поочередно вводят 0,2% растворы формалина и этония и применяют их в жидком состоянии. При использования 0,1% растворов формалина и этония после полимеризации и детоксикации антибиотики подвергают лиофилизации.

Теоретическое обоснование и экспериментальное подтверждение обеспечения стабильной и полной детоксикации и полимеризации антибиотиков и получения в результате безвредных препаратов, обладающих бактерицидным действием в отношении лекарственноустойчивых микроорганизмов позволило предложить рациональный и экономически выгодный способ изготовления и повышения эффективности антибиотиков, то есть получить технико-биологический эффект.

Полученные результаты иллюстрированы следующими примерами и таблицами.

Пример 1. Осуществление способа.

Во флаконы с лиофилизированным антибиотиком (пенициллин, метициллин, эритромицин, амоксициллин, амоксиклав, стрептомицин, тетрациклин, энфроксацин и др.) с помощью шприца внесли по 5,0 мл 0,2% раствора формалина для детоксикации и полимеризации при 42°С в течение 3-5 суток, а затем во флаконы с растворенным в 0,2% растворе формалина антибиотиком ввели с помощью шприца 5,0 мл 0,2% раствора этония для продолжения детоксикации и полимеризации в термостате при 42°С в течение 3-5 суток.

Полученные растворы антибиотиков при комнатной температуре сохраняли прозрачность, бактерицидную активность в течение 1 года (срок наблюдения).

Для изготовления препаратов в лиофилизированном виде детоксикацию и полимеризацию антибиотиков проводили в уменьшенном вдвое объеме формалина и этония. При этом лиофилизированный тюбик с антибиотиком сохранял свою исходную форму в течение 1 года (срок наблюдения).

Пример 2. Испытание ряда модифицированных антибиотиков на токсичность.

В исследованиях использовали 24 белых мышей массой 18-20 г и 24 цыплят-бройлеров 20-суточного возраста, которых разделили на 4 группы по 6 голов в каждой. Испытание на токсичность проводили ежедневно в течение трех суток путем подкожного введения по 0,5 мл модифицированного пенициллина, тетрациклина, амоксициллина и энфроксацина (байтрила). При этом на месте введения модифицированных антибиотиков не было гнойных или некротических поражений, а все животные (мыши и бройлеры) остались живыми в течение 15 суток (срок наблюдения).

Пример 3. Сравнительная оценка бактерицидной эффективности коммерческих и модифицированных антибиотиков.

Для оценки бактерицидной эффективности модифицированных антибиотиков использовали бумажные диски, пропитанные антибиотиками, результаты исследования представлены в таблице 1.

Таблица 1.
Сравнительная оценка эффективности коммерческих и модифицированных антибиотиков по диаметрам подавления роста микроорганизмов на агаре Хоттингера.
№ № п/п Наименование антибиотика Содержание в бумажном диске, мкг Диаметры подавления роста (в мм)
S.aureusE.coli S.dublin Bac.subtilis
1Пенициллин 1015-20 18-2220-22 20-22
2М*-пенициллин 10 30-3530-35 30-35 30-35
3 Метициллин 1020-22 22-2520-22 22-23
4М-метициллин 10 30-3535-40 30-35 30-35
5 Эритромицин 1520-22 20-2518-20 20-22
6М-эритромицин 15 30-3535-40 30-35 30-35
7 Амоксициллин 520-22 22-2518-20 20-22
8М-амоксициллин 5 25-3530-35 30-35 30-35
9 Амоксициллин /клавуланат 5 30-3525-27 25-27 25-27
10 М-амоксициллин /клавуланат 5 40-5035-40 35-40 35-40
11 Стрептомицин 1015-20 20-2220-22 18-20
12М-стрептомицин 10 30-3530-35 30-35 30-35
13 Тетрациклин 3020-25 25-2725-28 22-25
14М-тетрациклин 30 30-3535-40 35-40 35-40
*М - модифицированный антибиотик

Учитывая, что показатели эффективности антибиотиков по диаметрам задержки роста микроорганизмов по бумажным дискам являются относительными, для более точной оценки использовали мясопептонный глицериновый бульон (МПГБ) с определенной концентрацией микроорганизмов и антибиотиков. Полученные результаты представлены в таблице 2.

Таблица 2.
Бактерицидная эффективность антибиотиков (ЕД/мл, мкг/мл) в МПГБ, содержащем 10 тысяч микробных клеток в 1 мл
№ № п/пНаименование антибиотикаОбъем МПГБ, млS.aureus E.coli S.dublinBac.subtilis
1.Пенициллин 10 12-1510-12 12-14 15-16
100 12-15 10-1212-14 15-16
2.М*-пенициллин 10 5-75-6 6-76-7
100 5-95-6 6-76-7
3. Метициллин 10 10-1210-12 10-12 10-12
100 10-12 10-1210-12 10-12
4.М-метициллин 10 5-65-6 5-65-6
100 5-65-6 5-65-6
5. Эритромицин 1012-15 10-1212-13 12-13
способ повышения эффективности антибиотиков, патент № 2425668 100 12-1510-12 12-13 12-14
6.М-эритромицин 10 5-75-6 5-65-6
100 5-85-6 5-65-7
7. Амоксициллин 10 10-129-10 9-109-10
100 10-129-10 9-109-10
8. М-амоксициллин 10 7-84-5 4-54-5
100 6-84-5 4-54-5
9. Амоксициллин/ 105-6 5-65-7 5-7
клавуланат 100 5-65-7 5-75-7
10. М-амоксициллин/ 103-4 2-32-3 2-3
клавуланат 100 3-42-3 2-32-3
11. Стрептомицин 10 10-129-10 8-108-10
100 10-129-10 8-109-10
12. М-стрептомицин 10 10-129-10 8-108-10
100 10-129-10 8-109-10
13. Тетрациклин 10 20-2218-20 18-20 18-22
100 20-22 18-2218-20 18-20
14.М-тетрациклин 10 12-159-10 7-97-9
100 12-157-9 7-97-9
15. Энфроксацин 10 10-1210-12 10-12 12-14
100 10-12 10-1210-12 12-14
16.М-энфроксацин 10 5-65-6 5-65-6
100 5-65-6 5-65-7
*М - модифицированный антибиотик

Из данных, представленных в таблице 1, следует, что диаметры подавления роста микроорганизмов по бумажным дискам на агаре Хоттингера у модифицированных антибиотиков превышают показатели для известных коммерческих препаратов практически вдвое. Идентичные показатели бактерицидной активности у модифицированных антибиотиков получены в сравнении с коммерческими препаратами в отношении 10 тысяч в 1 мл МПГП указанных микроорганизмов (табл.2).

Класс A61K31/00 Лекарственные препараты, содержащие органические активные ингредиенты

9-[2-(4-изопропилфенокси)этил]аденин, обладающий антидепрессантным и противострессорным действием -  патент 2529817 (27.09.2014)
улучшение памяти у пациентов с оценкой 24-26 баллов по краткой шкале оценки психического статуса -  патент 2529815 (27.09.2014)
способ определения подлинности и количественного содержания бензэтония хлорида в лекарственных препаратах -  патент 2529814 (27.09.2014)
биологически активная композиция -  патент 2529812 (27.09.2014)
биологически активное средство для профилактики и лечения болезней мочеполовой системы у мужчин и женщин, поверхностных повреждений кожи, а также как средство интимной гигиены для профилактики заболеваний, передаваемых половым путем -  патент 2529801 (27.09.2014)
стабильные составы бортезомиба -  патент 2529800 (27.09.2014)
способ получения лекарственных соединений, содержащих дабигатран -  патент 2529798 (27.09.2014)
способ получения алкилбензилдиметиламмонийфторидов, обладающих противовирусным и антибактериальным действием -  патент 2529790 (27.09.2014)
способ выбора лечения акне у женщин -  патент 2529789 (27.09.2014)
офтальмологический ирригационный раствор -  патент 2529787 (27.09.2014)
Наверх