адсорбент для улавливания, концентрирования и хранения co2

Классы МПК:B01J20/22 содержащие органический материал
B01D53/62 оксиды углерода
Автор(ы):, , ,
Патентообладатель(и):Общество с ограниченной ответственностью "ЭНВАЙРОКЕТ" (RU)
Приоритеты:
подача заявки:
2009-10-29
публикация патента:

Изобретение относится к области очистки газов. Адсорбент содержит носитель, в качестве которого использована металлорганическая каркасная структура типа MOF-5, в узлах решетки которой находятся кластеры в виде неорганических оксометаллатных многогранников, содержащих ионы цинка, меди или кобальта, линкеры в виде остатков бензолполикарбоновых или бифенилкарбоновой кислоты, и инкаплулированные в поры носителя олигомеры, содержащие полиэтиленамины -CH 2-CH(NH2)n типа РЕРА, где значение n=5-10. Создан эффективный материал с высокой адсорбционной емкостью по СO2.

Формула изобретения

Адсорбент для улавливания, концентрирования и хранения СО 2, состоящий из носителя, с нанесенными на него олигомерами, содержащими аминогруппы, отличающийся тем, что в поры носителя - металлорганической каркасной структуры типа MOF-5, где в качестве линкеров - остатки бензолполикарбоновых или бифенилкарбоновой кислот, а в узлах решетки кластеры в виде неорганических оксометаллатных многогранников, содержащих ионы цинка, меди, или кобальта, инкапсулированны олигомеры, содержащие полиэтиленамины -CH2-CH(NH 2)n - типа РЕРА, где значение n находится в пределах от 5 до 10.

Описание изобретения к патенту

Изобретение относится к области химической технологии, в частности к адсорбентам для хранения газов, улавливания, концентрирования и хранения CO2, и может быть использовано для глубокой очистки газов от диоксида углерода.

Решение проблемы улавливания, хранения и утилизации CO2 поставлено в ряд наиболее приоритетных задач в связи с проблемой глобального потепления и изменения климата. Решение этой проблемы предусматривает значительное снижение техногенных выбросов СО2. Эта проблема важна также и в случае разработки систем жизнеобеспечения космических станций, подводных лодок и т.д.

Для хранения СО2 используется способ закачивания СО 2 в геологические породы, где этот газ образует карбонаты и уже не может быть использован для переработки в какие-либо ценные продукты. Кроме того, этот способ непригоден для решения проблемы жизнеобеспечения.

Известны некоторые твердые адсорбенты (цеолиты, угли), но их адсорбционная емкость ограничена 3-6 ммоль/г. Оксиды щелочноземельных металлов могут поглощать значительные количества CO2, например, оксид магния стехиометрически может реагировать с CO2 (25 ммоль CO2 на 1 г MgO), однако для полного выделения СО 2 из такого материала требуются температуры до 600°С. По этой причине этот материал пригоден для поглощения CO 2, но мало пригоден для концентрирования и хранения, предусматривающих возможность легкого выделения CO2 с малыми затратами энергии.

Известен поглотитель СО2, содержащий гидроксид лития 85-90 вес.% и гидроксид кальция 10-15 вес (ТУ6-16-24-97-81, ТР ВТ347-81). Его стехиометрическая емкость составляет 467 лСO 2/кг, степень отработки - 0,32. Недостатками данного поглотителя являются его низкие химические характеристики, недостаточная механическая прочность.

Известен поглотитель CO 2, содержащий асбест и соединение щелочного металла. В качестве соединения щелочного металла использован гидроксид натрия. Стехиометрическая емкость поглотителя составляет 280 л СO 2/кг (GВ 1361913, CIA, 1974). Недостатками данного поглотителя являются его низкие кинетические характеристики, значительная гигроскопичность и невысокая степень отработки по CO2 .

Описан также поглотитель диоксида углерода, содержащий асбест и соединение гидрид лития при следующем соотношении компонентов, мас.%: гидрид лития 75-82 и асбест 18-25 (RU 2090257, B01J 20/04, B01J 20/30, 20.09.1997). Недостатками данного поглотителя являются гигроскопичность и невысокая степень отработки по CO2 .

Ближайшим аналогом настоящего изобретения являются адсорбционные (абсорбционные) методы, основанные на реакции моноэтаноламина с CO2 с образованием карбамата, который далее при повышении температуры может разлагаться с выделением CO2 . Однако этот «материал» для хранения СО2 позволяет запасать не более 5-6 ммоль/г и характеризуется рядом недостатков, в частности необходимостью очистки его от паров самого моноэтаноламина, который летуч и обладает неприятным запахом (Андреев Ф.А., Кардин С.И. и др. Технология связанного азота. М.: Химия, 1977).

Техническим результатом настоящего изобретения является создание эффективных материалов для хранения и концентрирования CO2 с емкостью по CO2 , превосходящей емкость моноэтаноламина, выбранного в качестве прототипа.

Для достижения заявленного технического результата предлагается адсорбент для улавливания, концентрирования и хранения CO2, состоящий из носителя с нанесенными на него олигомерами, содержащими аминогруппы, отличающийся тем, что в качестве носителя применена металлорганическая каркасная структура типа MOF-5, имеющая инкапсулированные олигомеры, содержащие полиэтиленамины -CH2-CH(NH2)n - типа РЕРА, где значение n находится в пределах от 5 до 10, в качестве линкеров остатки бензолполикарбоновой или бифенилкарбоновой кислоты, а в узлах решетки кластеры в виде неорганических оксометаллатных многогранников, содержащих ионы цинка, меди или кобальта.

Металлоорганические решетки (MOF) представляют собой новый класс пористых органических цеолитоподобных материалов, содержащих органические линкеры (например, ароматические поликарбоксилаты) и неорганические узлы [D.J.Tranchemontagne, J.Hunt, O.M.Yaghi, Tetrahedron, 2008, 1-5].

Согласно изобретению в качестве адсорбента использована структура MOF-5, [Zn4 O(X)2], где Х - остаток бензолдикарбоновой (терефталевой) кислоты, бензолтрикарбоновой кислоты, бифенилдикарбоновой кислоты. В структуре MOF-5 неорганические оксометаллатные многогранники (кластеры) такие, как Zn4O, или неорганические комплексы, содержащие ионы меди или кобальта, соединены жесткими органическими линкерами, такими как анионы фенилендикарбоксилата, с образованием морфологии MOF - цеолитоподобной трехмерной кубической решетки. Атомы структуры MOF-5 занимают только малую долю имеющегося пространства кристалла, объем, доступный для адсорбции, составляет 80% объема кристалла (для сравнения в случае цеолита У - доступный для адсорбции около 35%). Поры формируют 3-D канальную систему с апертурой 8А° и сечением 12А°. Такой адсорбент способен адсорбировать до 0.7 г олигомера на 1 г адсорбента при 20°С. Для сравнения: морденит характеризуется емкостью около 0.1 г/г, цеолит У - 0.25 г/г.

Процесс адсорбции, улавливания и хранения основан на обратимых реакциях между CO2 и амино-группами олигомеров, инкапсулированных в пористое пространство твердых высокопористых носителей.

Адсорбент заявляемой структуры получают проведением реакции нитрата цинка, или меди, или кобальта с бензолполикарбоновыми кислотами (например, бензолтрикарбоновой или бензолдикарбоновой кислотой) или бифенилдикарбоновой кислотой в диметилформамиде при 80°С в течение 16 ч с последующей сушкой при 80°С получаемого продукта.

Возможность применения настоящего изобретения и достижения заявленного технического результата подтверждается следующими примерами.

Пример 1

1 г воздушно-сухого адсорбента MOF-5, [Cu4(ВТС)2], где ВТС - бензолтрикарбоновая кислота, пропитывали раствором олигомера полиэтиленамина -(СН 2-СН(NH2))n - типа РЕРА (n=5-10). Количество адсорбированного олигомера составляет 0.7 г/г. Далее образец насыщают СО2 при 50°С, продувают Не и взвешивают. Количество поглощенного CO2 определяют также методом термодесорбции при 150°С (10 град/мин, скорость Не - 40 мл/мин) с улавливанием CO2 в ловушке, охлаждаемой жидким азотом. Количество поглощенного при 50°С и затем выделенного при 150°С CO2 составляет около 16 ммоль/г, что существенно превосходит аналогичное значение для моноэтаноламина (5-6 ммоль/г).

Пример 2

1 г воздушно-сухого адсорбента MOF-5, [Zn4O(BDC) 2], где BDC - бензолдикарбоновая кислота, пропитывают раствором олигомера полиэтиленамина -(СН2-СН(NH2)) n - типа РЕРА (n=5-10). Количество адсорбированного олигомера составляет 1 г/г. Далее образец насыщают CO2 при 50°С, продувают Не и взвешивают. Количество поглощенного CO2 определяют также методом термодесорбции при 150°С (10 град/мин, скорость Не - 40 мл/мин) с улавливанием CO2 в ловушке, охлаждаемой жидким азотом. Количество поглощенного при 50°С и затем выделенного при 150°С СО2 составляет около 23 ммоль/г, что существенно превосходит аналогичное значение для моноэтаноламина (5-6 ммоль/г).

Пример 3

1 г воздушно-сухого адсорбента MOF-5, [Со4 (ВFС)2], где BFD- бифенилдикарбоновой кислоты, пропитывают раствором олигомера полиэтиленамина -(СН2-СН(NH 2))n - типа РЕРА (n=5-10). Количество адсорбированного олигомера составляет 1 г/г. Далее образец насыщают СО2 при 50°С, продувают Не и взвешивают. Количество поглощенного СО2 определяют также методом термодесорбции при 150°С (10 град/мин, скорость Не - 40 мл/мин) с улавливанием CO 2 в ловушке, охлаждаемой жидким азотом. Количество поглощенного при 50°С и затем выделенного при 150°С CO2 составляет около 23 ммоль/г, что существенно превосходит аналогичное значение для моноэтаноламина (5-6 ммоль/г).

Адсорбент на основе олигомера, инкапсулированного в поры носителя типа MOF-5, не летуч, не обладает неприятным запахом и может использоваться не только в производственных, но и в бытовых помещениях.

Класс B01J20/22 содержащие органический материал

биоразлагаемый композиционный сорбент нефти и нефтепродуктов -  патент 2528863 (20.09.2014)
способ очистки сточных вод от тяжелых металлов методом адсорбции, фильтрующий материал (сорбент) и способ получения сорбента -  патент 2524111 (27.07.2014)
способ очистки проточной воды от загрязнителей -  патент 2516634 (20.05.2014)
композиции на основе хлорида брома, предназначенные для удаления ртути из продуктов сгорания топлива -  патент 2515451 (10.05.2014)
сорбент для диализа -  патент 2514956 (10.05.2014)
пеллеты и брикеты из спрессованной биомассы -  патент 2510660 (10.04.2014)
сорбирующие композиции и способы удаления ртути из потоков отходящих топочных газов -  патент 2509600 (20.03.2014)
способ подготовки образцов для анализа и картридж для него -  патент 2508531 (27.02.2014)
способ получения энтеросорбента -  патент 2497537 (10.11.2013)
композиция каликс[4]аренов для сорбции азо-красителей из водных растворов -  патент 2489205 (10.08.2013)

Класс B01D53/62 оксиды углерода

способ получения продукта для регенерации воздуха -  патент 2518610 (10.06.2014)
катализатор для избирательного окисления монооксида углерода в смеси с аммиаком и способ его получения (варианты) -  патент 2515529 (10.05.2014)
катализатор для избирательного окисления монооксида углерода в смеси с аммиаком и способ его получения -  патент 2515514 (10.05.2014)
способ получения водорода с полным улавливанием co2 и рециклом непрореагировавшего метана -  патент 2509720 (20.03.2014)
усовершенствованный интегрированный химический процесс -  патент 2504426 (20.01.2014)
наноструктурированный катализатор для дожигания монооксида углерода -  патент 2500469 (10.12.2013)
устройство и способ улавливания co2, основанный на применении охлажденного аммиака, с промывкой водой -  патент 2497576 (10.11.2013)
способ и устройство для отделения диоксида углерода от отходящего газа работающей на ископаемом топливе электростанции -  патент 2495707 (20.10.2013)
системы и способы удаления примесей из сырьевой текучей среды -  патент 2490310 (20.08.2013)
устройство и способ усовершенствованного извлечения со2 из смешанного потока газа -  патент 2486946 (10.07.2013)
Наверх