способ получения многослойного покрытия для режущего инструмента

Классы МПК:C23C14/24 вакуумное испарение
B23B27/14 резцы с режущими пластинками или наконечниками из специальных материалов 
Автор(ы):, , ,
Патентообладатель(и):Государственное образовательное учреждение высшего профессионального образования "Ульяновский государственный технический университет" (RU)
Приоритеты:
подача заявки:
2009-11-06
публикация патента:

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент (РИ) и может быть использовано в металлообработке. Технический результат - повышение работоспособности РИ и качества обработки. На рабочие поверхности режущего инструмента вакуумно-плазменным методом наносят двухслойное покрытие. В качестве нижнего слоя наносят карбонитрид титана и молибдена, или карбонитрид титана и хрома, или карбонитрид титана и кремния, или карбонитрид титана и алюминия, или карбонитрид титана и ниобия, или карбонитрид титана и циркония. В качестве верхнего слоя наносят нитрид титана и молибдена, или нитрид титана и хрома, или нитрид титана и кремния, или нитрид титана и алюминия, или нитрид титана и ниобия, или нитрид титана и циркония, легированный железом. 1 з.п. ф-лы, 1 табл.

Формула изобретения

1. Способ получения многослойного покрытия для режущего инструмента, включающий вакуумно-плазменное нанесение двухслойного покрытия, отличающийся тем, что в качестве нижнего слоя наносят карбонитрид титана и молибдена или карбонитрид титана и хрома или карбонитрид титана и кремния или карбонитрид титана и алюминия или карбонитрид титана и ниобия или карбонитрид титана и циркония, а в качестве верхнего слоя наносят нитрид титана и молибдена или нитрид титана и хрома или нитрид титана и кремния или нитрид титана и алюминия или нитрид титана и ниобия или нитрид титана и циркония, легированный железом.

2. Способ по п.1, отличающийся тем, что в двухслойном покрытии наносят нижний слой толщиной 40-50% от общей толщины покрытия, а общая толщина покрытия составляет 5-8 мкм.

Описание изобретения к патенту

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке.

Известен способ получения износостойкого покрытия для режущего инструмента (РИ), при котором на его поверхность вакуумно-дуговым методом наносят покрытие из нитрида титана (TiN) или карбонитрида титана (TiCN) (см. Табаков В.П. Работоспособность режущего инструмента с износостойкими покрытиями на основе сложных нитридов и карбонитридов титана. Ульяновск: УлГТУ, 1998. 122 с.). К причинам, препятствующим достижению указанного ниже технического результата при использовании известного способа, относится то, что в известном способе покрытия, обладающие хорошей адгезией к инструментальному материалу, имеют относительно низкую твердость и уровень сжимающих напряжений либо имеют высокую микротвердость, но недостаточную прочность сцепления с инструментальной основой. В результате этого покрытие легко подвергается абразивному износу, в нем быстро зарождаются и распространяются трещины, приводящие к разрушению покрытия, что снижает стойкость РИ с покрытием.

Наиболее близким способом того же назначения к заявленному изобретению по совокупности признаков является способ, включающий вакуумно-плазменное нанесение многослойного покрытия, состоящего из нижнего слоя нитрида титана и алюминия TiAlN и верхнего слоя нитрида титана, алюминия и циркония TiAlZrN (см. Патент на изобретение RU 2293794 C1, C23C 14/24, C23C 14/06. - 20.02.2007. - Бюл. № 5), принятый за прототип.

К причинам, препятствующим достижению указанного ниже технического результата при использовании известного способа, принятого за прототип, относится то, что в известном способе многослойное покрытие имеет относительно небольшую эффективность при фрезеровании. В результате покрытие плохо сопротивляется процессам трещинообразования и практически не препятствует проникновению тепла в глубь инструмента.

Повышение в последнее время стоимости металлорежущего инструмента и ужесточение требований к точности обрабатываемых деталей сделало еще более актуальной проблему повышения стойкости и производительности РИ. Основной причиной износа РИ является возникновение трещин в его режущей части, являющихся причиной появления сколов и выкрашиваний, связанных с усталостным разрушением и явлением ползучести режущего клина РИ. Ползучесть, в свою очередь, вызвана проникновением тепла, образующегося при резании и трении стружки о поверхности инструмента, в глубь инструмента. Одним из путей повышения стойкости и работоспособности РИ с покрытием является нанесение покрытий многослойного типа. Наличие в покрытии слоев с определенными теплофизическими и механическими свойствами способно тормозить процессы образования и распространения трещин без снижения микротвердости, улучшить термонапряженное состояние РИ с покрытием и повысить стойкость РИ.

Технический результат - повышение работоспособности РИ и качества обработки.

Указанный технический результат при осуществлении изобретения достигается тем, что в известном способе на рабочие поверхности РИ вакуумно-дуговым методом наносится двухслойное покрытие. Особенность заявляемого способа заключается в том, что в качестве нижнего слоя при давлении смеси газов (70% азота и 30% ацетилена) в камере установки 6,65·10 -3 Па наносят карбонитрид титана и молибдена, или карбонитрид титана и хрома, или карбонитрид титана и кремния, или карбонитрид титана и алюминия, или карбонитрид титана и ниобия, или карбонитрид титана и циркония, а в качестве верхнего слоя при давлении азота в камере установки 7,5·10-4 Па наносят нитрид титана и молибдена, или нитрид титана и хрома, или нитрид титана и кремния, или нитрид титана и алюминия, или нитрид титана и ниобия, или нитрид титана и циркония, легированный железом. Применение карбонитридов в качестве нижнего слоя позволяет повысить прочность сцепления покрытия с основой, высокие остаточные сжимающие напряжения в верхнем слое тормозят трещинообразование, а чередование слоев переменной твердости препятствует росту трещин. Компоновка установки для нанесения покрытия включает один составной катод с корпусом из титанового сплава ВТ1-0 и вставкой из железа и два составных катода с корпусом из титанового сплава ВТ1-0 и вставкой из хрома, или молибдена, или ниобия, или циркония или составной катод с алюминиевым корпусом и вставкой из ВТ1-0 или катод из сплава титана и кремния. При осаждении верхнего слоя используются все три катода с целью получения слоя TiCrFeN, или TiMoFeN, или TiNbFeN, или TiZrFeN, или TiAlFeN, или TiSiFeN, а при осаждении нижнего слоя катод, содержащий железо, отключают. Использование в качестве материалов слоев сложных карбонитридов (TiCrFeCN, или TiMoFeCN, или TiNbFeCN, или TiZrFeCN, или TiAlFeCN, или TiSiFeCN) с высокими остаточными сжимающими напряжениями способствует повышению трещиностойкости покрытия и прочности сцепления с инструментальной основой, кроме того, такие материалы имеют более низкую теплопроводность по сравнению с покрытиями типа TiN, TiCN, TiAlN. При этом в зависимости от области использования инструмента с покрытием его общая толщина может колебаться в пределах от 5 до 8 мкм, а доля нижнего слоя составлять 40-50% от общей толщины покрытия.

Сущность изобретения заключается в следующем. В процессе резания РИ работает в условиях трещинообразования, а также воздействия высоких температур. Для снижения интенсивности процессов износа и разрушения покрытия и самого инструмента наиболее эффективны покрытия сложного состава, а в условиях трещинообразования еще большую эффективность показывают многослойные покрытия со слоями сложного состава. При этом увеличение количества легирующих элементов в составе покрытия приводит к росту его твердости и износостойкости, а также трещиностойкости. Поэтому целесообразно применение двухслойного покрытия, в котором верхний слой должен обладать высокой износостойкостью, а нижний в первую очередь должен обеспечивать высокую прочность сцепления с инструментальной основой. В зависимости от условий резания толщина покрытия меняется от 5 до 8 мкм (меньшие значения - при прерывистом резании). При этом при уменьшении толщины покрытия доля нижнего слоя возрастает до 50%, чтобы обеспечить возможность получения сплошного слоя, способного полноценно выполнять свои функции (слои толщиной менее 1 мкм нефункциональны). Пластины с покрытиями, полученные с отклонениями от указанных в формуле изобретения толщин слоев, показали более низкие результаты.

Для экспериментальной проверки заявленного способа было нанесено покрытие-прототип с соотношением слоев, соответствующем оптимальному значению, указанному в известном способе, а также двухслойное покрытие по предлагаемому способу. Покрытия наносили на твердосплавные пластины в вакуумной камере установки «Булат-6», снабженной тремя вакуумно-дуговыми испарителями, расположенными горизонтально в одной плоскости. В качестве катодов испаряемого металла при нанесении нижнего слоя (TiCrCN, или TiMoCN, или TiNbCN, или TiZrCN, или TiAlCN, или TiSiCN) использовали два составных катода с корпусом из титанового сплава ВТ1-0 со вставкой из хрома, или молибдена, или ниобия, или циркония, или составной катод с алюминиевым корпусом и вставкой из ВТ1-0, или катод из сплава титана и кремния. При нанесении верхнего слоя (TiCrFeN, или TiMoFeN, или TiNbFeN, или TiZrFeN, или TiAlFeN, или TiSiFeN) используют указанные два катода плюс катод, содержащий корпус из титанового сплава ВТ1-0 со вставкой из железа и расположенный между первыми катодами. Покрытия наносили после предварительной ионной очистки.

Ниже приведен конкретный пример осуществления предлагаемого способа (покрытие TiCrCN-TiCrFeN толщиной 6 мкм).

Твердосплавные пластины МК8 (размером 4,7×12×12 мм) промывают в ультразвуковой ванне, протирают ацетоном, спиртом и устанавливают на поворотном устройстве в вакуумной камере установки «Булат-6», снабженной тремя испарителями, расположенными горизонтально в одной плоскости. Камеру откачивают до давления 6,65·10-3 Па, включают поворотное устройство, подают на него отрицательное напряжение 1,1 кВ, включают один испаритель и при токе дуги 100 А производят ионную очистку и нагрев пластин до температуры 560-580°C. Ток фокусирующей катушки 0,4 А. Затем снижают отрицательное напряжение до 160 В, ток катушек до 0,4 А, включают два противоположных испарителя (катода) - составных (с хромовой вставкой), подают в камеру смесь реакционных газов (70% азота и 30% ацетилена) и осаждают покрытие толщиной 3,0 мкм (слой TiCrCN) в течение 18 мин. Затем при напряжении до 160 В, токе фокусирующих катушек до 0,4 А включают третий катод (содержащий железо). В камеру подается азот и осаждают второй слой покрытия (TiCrFeN) толщиной 3,0 мкм в течение 18 мин. Затем отключают испарители, подачу реакционного газа, напряжение и вращение приспособления. Через 15-20 мин камеру открывают и извлекают инструмент с покрытием.

Стойкостные испытания проводили на горизонтально-фрезерном станке 6Н81 при обработке конструкционной стали 5ХНМ. Испытывали твердосплавные пластины марки МК8, обработанные по известному и предлагаемому способам. Критерием износа служила фаска износа по задней поверхности шириной 0,4 мм.

Таблица 1
Результаты испытаний РИ с покрытием
№ п/п Материал покрытия Толщина слоев покрытия (нижний-верхний), мкм Hµ, ГПа K0Стойкость, минПримечание
1 23 45 67
Обрабатываемый материал - 5ХНМ, V=250 м/мин, S=0,25 мм/зуб, t=1 мм
1TiN 621,2 0,7038 Аналог
2TiAlN-TiAlZrN 2-436,1 0,3395 Прототип
3TiCrCN-TiCrFeN 3-336,7 0,31127 В соответствии с формулой
4TiZrCN-TiZrFeN 3-337,2 0,32137
5TiMoCN-TiMoFeN 3-336,9 0,32133
6TiAlCN-TiAlFeN 3-336,9 0,30138
7TiSiCN-TiSiFeN 3-336,7 0,31135
8TiNbCN-TiNbFeN 3-336,5 0,29126
9TiCrCN-TiCrFeN 4-235,7 0,35118 Получены с отклонениями толщины
10TiZrCN-TiZrFeN 4-236,1 0,37112
11TiMoCN-TiMoFeN 4-234,5 0,40112
12TiAlCN-TiAlFeN 4-235,9 0,35117
13TiSiCN-TiSiFeN 4-236,8 0,37114
14TiNbCN-TiNbFeN 4-234,7 0,40113
15TiCrCN-TiCrFeN 3-336,2 0,38118 При одинаковом давлении
16TiZrCN-TiZrFeN 3-335,8 0,36121
17TiMoCN-TiMoFeN 3-336,2 0,37119
18TiAlCN-TiAlFeN 3-336,2 0,38118
19TiSiCN-TiSiFeN 3-335,8 0,36122
20TiNbCN-TiNbFeN 3-336,2 0,37120
21TiCrCN-TiCrFeN 3-336,2 0,41110 При одинаковой температуре
22TiZrCN-TiZrFeN 3-336,1 0,42113
23TiMoCN-TiMoFeN 3-336,0 0,45120
24TiAlCN-TiAlFeN 3-336,5 0,41110
25TiSiCN-TiSiFeN 3-336,3 0,42113
26TiNbCN-TiNbFeN 3-335,9 0,45120
1. Hµ - микротвердость, ГПа (по Виккерсу).

2. K0 - коэффициент отслоения, уменьшение величины которого свидетельствует о росте прочности сцепления с инструментальной основой.

Как видно из приведенных в табл.1 данных, стойкость пластин, обработанных по предлагаемому способу, выше стойкости пластин, обработанных по способу-прототипу, на 32-45%. При этом пп.9-14 иллюстрируют, что при нарушении требований по назначению толщин слоев стойкость пластин снижается. В пп.15-20 показано, что в случае применения покрытий со слоями, осажденными при одинаковом давлении газа, стойкость также снижается. В пп.21-26 показано, что в случае применения покрытий со слоями, осажденными при одинаковой температуре конденсации, стойкость также снижается.

Класс C23C14/24 вакуумное испарение

способ нанесения аморфного алмазоподобного покрытия на лезвия хирургических скальпелей -  патент 2527113 (27.08.2014)
испаритель для органических материалов -  патент 2524521 (27.07.2014)
скользящий элемент, в частности поршневое кольцо, имеющий покрытие, и способ получения скользящего элемента -  патент 2520245 (20.06.2014)
промышленный генератор пара для нанесения покрытия из сплава на металлическую полосу (ii) -  патент 2515875 (20.05.2014)
испаритель для вакуумного нанесения тонких пленок металлов и полупроводников -  патент 2507304 (20.02.2014)
негаммафазный кубический alcro -  патент 2507303 (20.02.2014)
способ получения многослойного покрытия для режущего инструмента -  патент 2503743 (10.01.2014)
способ получения многослойного покрытия для режущего инструмента -  патент 2503742 (10.01.2014)
способ изготовления режущих пластин -  патент 2502827 (27.12.2013)
способ сборки шатунно-поршневого узла -  патент 2499900 (27.11.2013)

Класс B23B27/14 резцы с режущими пластинками или наконечниками из специальных материалов 

Наверх