водорастворимые порошки и таблетки

Классы МПК:A61K9/14 в виде частиц, например порошки
A61K9/26 в виде разрозненных частиц в поддерживающей их матрице
A61K47/26 углеводы
A61J3/00 Способы и устройства для изготовления лекарственных форм (химическая часть см в соответствующих классах)
Автор(ы):, , ,
Патентообладатель(и):СОСЬЕТЕ ДЕ ПРОДЮИ НЕСТЛЕ С.А. (CH)
Приоритеты:
подача заявки:
2006-06-14
публикация патента:

Изобретение относится к растворимым или диспергируемым в воде порошкам и таблеткам на основе углеводной матрицы и к способу их изготовления, в которой углевод составляет 50 мас.% от массы матрицы. Порошок или таблетку со скрытой пористостью обрабатывают газом так, чтобы содержащийся в порах газ усиливал растворение или диспергирование при контакте с водой. Газом является азот, диоксид углерода, воздух, кислород, гелий, водород, аргон, неон, метан, этан, криптон, хлорфторуглерод или их смесь. Газ вводят преимущественно под давлением при температуре выше температуры размягчения углевода. Изобретение обеспечивает повышение растворимости или диспергируемости порошка или таблетки на основе углеводной матрицы. 5 н. и 31 з.п. ф-лы, 1 ил., 2 табл.

водорастворимые порошки и таблетки, патент № 2413505

Формула изобретения

1. Способ повышения растворимости или диспергируемости порошка или таблетки на основе углеводной матрицы, в которой углевод составляет, по меньшей мере, 50 мас.% от массы матрицы, путем обработки порошка или таблетки, или их предшественника газом, так что газ поглощается и удерживается этим порошком или таблеткой, который включает обеспечение порошка или таблетки со скрытой пористостью, достаточной для того, чтобы содержащийся в порах газ усиливал растворение или диспергирование их при контакте с водой, при этом газ представляет собой азот, диоксид углерода, воздух, кислород, гелий, водород, аргон, неон, метан, этан, криптон, хлорфторуглерод или их смесь.

2. Способ по п.1, в котором порошок или таблетка имеют аморфную углеводную матрицу.

3. Способ по п.1 или 2, в котором углевод представляет собой сахар, крахмал или модифицированный крахмал.

4. Способ по п.1, в котором углевод составляет, по крайней мере, 75 мас.% от веса матрицы.

5. Способ по п.1, в котором порошок или таблетка содержат также белок, гидроколлоид или жир.

6. Способ по п.1, в котором порошок или таблетка содержат, по крайней мере, 3 мл (STP)/г газа.

7. Способ по п.6, в котором порошок или таблетка содержат, по крайней мере, 5 мл (STP)/г газа.

8. Способ по п.7, в котором порошок или таблетка содержат, по крайней мере, 7 мл (STP)/г газа.

9. Способ по п.1, в котором для производства порошка газ включается в углевод, находящийся в форме расширяющихся частиц.

10. Способ по п.9, в котором газ вводится внутрь частиц при обработке частиц под давлением в атмосфере газа и при температуре выше точки размягчения углевода.

11. Способ по п.1 для изготовления таблеток, который включает формирование таблетки из частиц, включающих углевод и газ, заключенный в этом углеводе.

12. Способ по п.11, в котором газ включают внутрь таблеток путем обработки таблеток под давлением в атмосфере газа при температуре выше Tg углевода.

13. Способ по п.1, в котором порошок или таблетка имеют фармацевтическое или пищевое предназначение.

14. Способ по п.1 для повышения растворимости или диспергируемости таблетки, которая включает углеводную матрицу и один или несколько активных ингредиентов.

15. Не образующий пены растворимый или диспергируемый порошок на основе углеводной матрицы, в которой углевод составляет, по меньшей мере, 50 мас.% от массы матрицы, содержащий включенный газ в таком количестве, которое способствует растворению или диспергированию порошка при контакте с водой, при этом газ представляет собой азот, диоксид углерода, воздух, кислород, гелий, водород, аргон, неон, метан, этан, криптон, хлорфторуглерод или их смесь.

16. Порошок по п.15, который имеет аморфную углеводную матрицу.

17. Порошок по п.15 или 16, в котором углеводом является сахар, крахмал или модифицированный крахмал.

18. Порошок по п.15, в котором углевод составляет, по крайней мере, 75 мас.% от массы матрицы.

19. Порошок по п.15, который содержит менее 5 мас.% пенообразующего белка.

20. Порошок по п.15, который содержит пеноразрушающее средство.

21. Порошок по п.15, который содержит, по крайней мере, 3 мл (STP)/г газа.

22. Порошок по п.21, который содержит, по крайней мере, 5 мл (STP)/г газа.

23. Порошок по п.22, который содержит, по крайней мере, 7 мл (STP)/г газа.

24. Порошок по п.15, который имеет фармацевтическое или пищевое предназначение.

25. Способ производства порошка по любому из пп.15-24, который предусматривает создание порошка из частиц, включающих углевод и газ, где углевод находится в форме расширяющихся частиц; в котором газ вводят внутрь частиц при обработке частиц газом под давлением при температуре выше точки размягчения углевода.

26. Водорастворимая или диспергируемая в воде таблетка на основе углеводной матрицы, в которой углевод составляет, по меньшей мере, 50 мас.% от массы матрицы, содержащая включенный газ в таком количестве, которое способствует растворению или диспергированию порошка при контакте с водой, при этом газ представляет собой азот, диоксид углерода, воздух, кислород, гелий, водород, аргон, неон, метан, этан, криптон, хлорфторуглерод или их смесь.

27. Таблетка по п.26, которая имеет аморфную углеводную матрицу.

28. Таблетка по п.26 или 27, в которой углевод представляет собой сахар, крахмал или модифицированный крахмал.

29. Таблетка по п.26, в которой углевод составляет, по крайней мере, 75 мас.% от массы матрицы.

30. Таблетка по п.26, которая также содержит белок, гидроколлоид или жир.

31. Таблетка по п.26, которая содержит, по крайней мере, 3 мл (STP)/г газа.

32. Таблетка по п.31, которая содержит, по крайней мере, 5 мл (STP)/г газа.

33. Таблетка по п.32, которая содержит, по крайней мере, 7 мл (STP)/г газа.

34. Таблетка по п.26 фармацевтического или пищевого назначения.

35. Таблетка по п.26, которая содержит углеводную матрицу и, по меньшей мере, один активный ингредиент.

36. Способ изготовления таблетки согласно любому из пп.26-35, который предусматривает создание таблетки из частиц, включающих углевод и газ, включенный в углеводную матрицу; в котором газ вводят внутрь таблеток при обработке их в атмосфере газа под давлением при температуре выше точки размягчения углеводной матрицы.

Описание изобретения к патенту

Область техники, к которой относится изобретение

Данное изобретение относится к медицине и пищевой промышленности: к растворимым в воде или способным к диспергированию в воде порошкам и таблеткам на основе углеводов с улучшенной способностью к восстановлению в воде.

Уровень техники

Водорастворимые порошки и таблетки на основе матриц из аморфных углеводов используются в различных областях. Например, такие порошки или таблетки в форме, пригодной для потребления человеком, используются в пищевой промышленности при производстве напитков, продуктов питания, кондитерских изделий, а также в фармацевтической отрасли. В качестве альтернативы эти порошки и таблетки могут содержать такие вещества, как, например, детергенты, способствующие их растворению или диспергированию в воде перед использованием. Во многих случаях, желательно, чтобы порошки или таблетки были способны быстро растворяться или диспергироваться при контакте с водой, например, известно, что многие проблемы, связанные с биосовместимостью лекарств, вызваны плохим (слабым) растворением таблеток. Порошок или таблетка могут содержать химическую добавку для растворения, и такие добавки, вообще, представляют собой комбинации химических веществ, которые стабильны в твердом состоянии, но, взаимодействуя с водой, образуют газ, например, сочетание кислоты и карбоната или бикарбоната. В ряде случаев количество добавляемых газообразующих химических веществ такое, чтобы обеспечить бурное выделение газа («кипение», «шипучесть» порошков и таблеток).

Конкретным примером водорастворимого углеводного порошка являются растворимые вспенивающие и взбивающие порошки, которые при добавлении жидкости способны образовать взбитую пену, такие порошки нашли широкое применение. Например, они могут применяться для изготовления молочных взбитых напитков или напитков типа каппучино, они могут применяться при производстве пищевых продуктов, таких как десерты, супы и соусы. Растворимые кофейные напитки, из которых получают напитки типа каппучино, хорошо известны, и они обычно представляют собой сухую смесь растворимого сухого кофе и растворимого вспенивателя напитка. Известно, что продукты такого типа содержат включения газа, который при растворении порошка образует пену, так что при добавлении воды или молока (которые должны быть обязательно горячими) получают забеленный кофейный напиток с пенящейся поверхностью, который похож, по крайней мере, до некоторой степени, на традиционный итальянский каппучино. Примеры таких содержащих газ растворимых вспенивающихся напитков описаны в ЕР-А-0154192, ЕР-А-0450310 и ЕР-А-0885566.

Известны также растворимые вспениватели для напитков, которые содержат химические вспенивающие средства. Пенообразование зависит от (состава) порошка, содержащего ингредиент в основном белковой природы, например, казеин, который способен стабилизировать пену.

Во многих случаях присутствие газообразующих химических веществ нежелательно, например из-за их влияния на запах или может быть даже запрещено. Существует потребность в обеспечении растворимых или диспергируемых в воде углеводсодержащих порошков и таблеток с улучшенными свойствами восстановления в воде без применения химических добавок, способствующих растворению.

Раскрытие изобретения

В соответствии с одним аспектом данное изобретение обеспечивает способ повышения растворимости или диспергируемости порошка или таблетки на основе углеводной матрицы, заключающийся в обработке порошка или таблетки или их предшественника газом так, что газ поглощается и удерживается этим порошком или таблеткой, причем используются порошок или таблетка с достаточной «скрытой», глубокой пористостью так, что содержащийся в порах газ способствует растворению или диспергированию при контакте с водой.

Согласно другому аспекту в данном изобретении предлагаются непенящийся водорастворимый или вододиспергируемый порошок на основе углеводной матрицы, причем указанный порошок содержит включенный в поры газ в количестве, которое способствует растворению или диспергированию порошка при контакте с водой.

Согласно еще одному аспекту настоящее изобретение предусматривает водорастворимую или вододиспергируемую таблетку на основе углеводной матрицы, содержащую включенный в поры газ и имеющую достаточную «скрытую» пористость, чтобы обеспечить удерживание включенного газа в количестве, которое способствует растворению или диспергированию этой таблетки при контакте с водой.

Осуществление изобретения

Порошки и таблетки, о которых идет речь в данном изобретении, могут иметь основой любой подходящий углевод или смесь углеводов. В целом порошок или таблетка содержит аморфную углеводную матрицу, которая дополнительно включает другие компоненты, зависящие от области предполагаемого использования этого порошка или таблетки. Таблетки могут состоять из углеводной матрицы или, чаще, содержат углеводную матрицу вместе с одним или несколькими иными ингредиентами. Примерами подходящих углеводов являются сахара, такие как лактоза, декстроза, фруктоза, сахароза, мальтодекстрин, циклодекстрины и кукурузный сироп, крахмал и модифицированный крахмал. Если таблетки или порошки непищевого качества, тогда может использоваться любой другой вид водорастворимого или вододиспергируемого крахмала. Углевод обычно составляет, по меньшей мере, 50 мас.% от общей массы матрицы, предпочтительно, по меньшей мере, 75 мас.% матрицы и более предпочтительно, по меньшей мере, 90 мас.% матрицы.

На свойства матрицы можно повлиять и, в частности, оптимизировать их путем добавления пластификаторов, антипластификаторов, наполнителей, соединений, которые влияют на образование мелких кристаллов или упорядоченных зон в материалах, поперечно-сшивающих агентов, эмульгаторов, стабилизаторов пены, красителей и связующих. Таких добавок предпочтительно содержится не более 25 мас.% и более предпочтительно не более 10 мас.% от общей массы матрицы. Таблетки и порошки могут содержать такие материалы, как белок, гидроколлоиды и жиры. Таблетки, в частности, могут содержать один или несколько активных ингредиентов, природа которых зависит от предполагаемой области использования таблеток.

Предпочтительно таблетки и порошки содержат не более чем 7 мас.% воды, более предпочтительно не более 5 мас.% воды и самое предпочтительное не более 3 мас.% воды.

В случае если порошок или таблетка непенящиеся, композиция должна либо содержать незначительные количества пеностабилизирующих компонентов, таких как белки, чтобы допустить образование пены (или такие компоненты должны отсутствовать совсем) либо же она должна содержать разрушающий пену агент. Примеры таких дестабилизирующих пену агентов включают изопропанол, жиры и липиды, сахарозу, моноэфиры, смеси моно/диэфиров и моностеарат пропиленгликоля. В этой связи порошок или таблетка должны быть непенообразующими (минимальное образование пены).

Порошки и таблетки согласно настоящему изобретению содержат заключенный внутри них газ. Это может быть подходящий газ, который не оказывает вредного влияния на другие компоненты порошка или таблеток. Если порошок или таблетки предназначаются для потребления человеком в виде пищевого продукта, напитка, питательного или фармацевтического средства, газ должен быть пищевой категории качества. Примеры подходящих газов включают азот, диоксид углерода, воздух, кислород, гелий, водород, аргон, неон, метан, этан, криптон, хлор, хлорфторуглероды и их смеси. Количество газа, введенного внутрь порошка или таблетки, предпочтительно составляет, по меньшей мере, 3 мл (STP)/г, более предпочтительно, по меньшей мере, 5 мл (STP)/г и самое предпочтительное, по меньшей мере, 7 мл (STP)/г.

Газ может вводиться в порошок, таблетку или их предшественник любым подходящим способом. Один из подходящих способов включает обеспечение матрицы в форме частиц в состоянии расширения с последующим включением газа в эти частицы. В целом способ предусматривает нагревание порошка при добавлении газа при температуре, при которой матрица становится мягче, температура может быть выше точки стеклования (Tg) матрицы. Газ поступает в частицы, частицы заполняются газом и отверждаются путем охлаждения для удержания газа внутри частиц. Эти частицы, содержащие газ, могут представлять собой конечную форму продукта или же они подмешиваются к другому компоненту в порошковой форме с тем, чтобы образовался конечный порошковый продукт.

Пористые частицы могут производиться при введении газа внутрь водного концентрата матрицы, имеющего содержание твердых частиц, пригодное для сушки распылением, в целом свыше около 30% вес. Газ можно вводить в водный концентрат матрицы при давлении от около 500 кПа до около 5 МПа, хотя обычно давление, при котором вводится газ, не является критическим. Обработанная газом водная матрица затем сушится распылением до порошкообразного состояния. Эти частицы затем подвергают действию инертного газа при высоком давлении и температуре выше точки размягчения матрицы, которая для аморфной углеводной матрицы может быть той же самой, что и аналогичная для Tg матрицы. Давление может быть от около 100 кПа до около 20 МПа. Требуемая температура будет зависеть от состава частиц, так как это будет влиять на Tg, но может быть легко определена для любого типа частиц и композиции. Использовать температуры, превышающие более чем около 50°С, вплоть до Tg частиц, не является необходимым и лучше всего этого избегать. Частицы могут быть подвергнуты действию давления и температуры так долго, как это желательно, поскольку увеличение продолжительности времени будет в целом увеличивать степень включения газа, но время от около 10 секунд до около 30 минут в целом является достаточным. Затем частицы подвергают быстрому охлаждению или отверждению, чтобы обеспечить включение газа. Для охлаждения частиц могут использоваться подходящие охлаждающие процедуры.

Другой пригодный способ введения газа в частицы включает впрыскивание газа в расплавленную массу матрицы частиц, которая содержит немного или вовсе не содержит воды, например в экструдере. Газ может вводиться при давлении от около 100 кПа расчетных до около 20 МПа расчетных. Требуемая температура будет зависеть от состава матрицы, так как это будет зависеть от температуры плавления, но ее легко можно определить, исходя из типа и состава матрицы. Температуры свыше около 150°С в основном следует избегать. Расплавленную массу можно затем экструдировать через небольшой мундштук экструдера и измельчить до порошкообразного состояния. В зависимости от скорости отверждения матрицы матрица может нуждаться в отверждении или резком охлаждении под давлением перед тем, как ее превратят в порошок, для предотвращения истечения газа или матрицы. Отверждение или резкое охлаждение предпочтительно осуществляют быстро, и этот промежуток времени может, например, колебаться от около 10 секунд до около 90 минут.

Если конечный продукт представляет собой порошок, он может использоваться в той форме, в которой его получают вышеописанным способом, или он может быть смешан с другими порошкообразными ингредиентами. В этом случае содержащий газ порошок может действовать как растворяющая добавка для всего порошка в целом. Любые активные ингредиенты предпочтительно включают в порошок до обработки (наполнения) его газом.

Когда конечный продукт представляет собой таблетку, он может быть изготовлен общеизвестным способом и затем «загружен» газом. Процесс, с помощью которого конкретное твердое вещество может быть превращено в таблетку с использованием давления, может быть разделен на две стадии: уплотнения и образования связей, и эта способность порошка образовать таблетку зависит от баланса между способностью частиц порошка к пластической деформации и их хрупкостью. Таблетки могут быть получены простым прессованием порошков, а в некоторых случаях используются такие любриканты, как стеарат магния, для улучшения уплотнения. Кроме того, обычно применяются связывающие агенты. В рамках выполнения изобретения эти связующие представляют собой, например (но неисключительно), углеводы, крахмалы в нативной или модифицированной форме, липиды, воска и жиры. Многие факторы оказывают влияние на уплотнение порошков, включая состав, размер частиц, влагосодержащие материалы, скорость сжатия и давление, способ, которым был приготовлен порошок (роллерная сушка, распылительная сушка, сушка замораживанием), текучесть порошка и хрупкость его частиц. Дополнительную информацию об изготовлении таблеток можно найти в известных обзорах, например, Pharmaceutical Powder Compaction Technology (1996), Ed Alderborn, G and Nystr m, C, Marcel Dekker, New York.

Согласно одному воплощению изобретения пенящиеся порошки, например, пищевого предназначения, полученные путем экструзии, распылительной сушки или замораживанием и имеющие высокий уровень «скрытой» пористости, уплотняют в форму таблеток так, как описано выше, и затем наполняют газом тем же, в общем, способом, что описан выше для изготовления порошков. Время выдержки, например продолжительность прессования свыше Tg, играет важную роль; время наполнения газом и объем вводимого газа зависят от условий загрузки и состава матрицы.

Возможно превращение прессуемых порошков с высокой скрытой пористостью, содержащих большой объем вводимого газа непосредственно в таблетки, необязательно вместе с другими ингредиентами. Уплотнение исходной смеси таблетки может осуществляться таким образом, что значительная доля скрытой пористости сохраняется. При использовании для уплотнения относительно низких значений давления большая часть газа остается в таблетке (в скрытых порах); можно оптимизировать процесс, открыв поры, улучшив тем самым растворимость таблетки. Если порошок размягчается, например, в результате повышения температуры, частицы могут быть сжаты без значительного растрескивания и тем самым сведении к минимуму потерь газа в процессе уплотнения. Для получения таблеток при уплотнении содержащего газ порошка вместе с другими порошкообразными ингредиентами газосодержащий компонент может действовать как добавка, способствующая растворению всей таблетки в целом.

Если таблетки или порошки на углеводной основе включают газосодержащий компонент как растворяющую добавку, этот компонент может составлять от 0,5 до 70% массы всей композиции. В окончательном составе газосодержащий компонент в основном имеет точку размягчения и/или Tg при, по меньшей мере, 35°С, более предпочтительно, по меньшей мере, 45°С и самое предпочтительное, по меньшей мере, 55°С. В случае, когда в основе матрицы - аморфный углевод, точка размягчения может быть (но необязательно) ограничена Tg.

Изготовление частиц и таблеток, содержащих газ, требует, чтобы газ поступал внутрь матрицы, внедрялся в нее, поглощался бы матрицей, образующей частицы и таблетки, и установлено, что механизм транспорта газа и его внедрения связан с составом матрицы и, в частности, со скрытой пористостью матрицы. Газ поступает в матрицу при температуре выше Tg как результат пониженной вязкости матрицы и ее повышенной подвижности (мобильности). Оптимум температурного интервала для того, чтобы газ поступил в матрицу, зависит от состава матрицы, но может легко быть определен в каждом конкретном случае. Ниже Tg матрицы скорость поступления газа будет очень низкой, а если температура слишком превышает Tg, матрица стремится сплющиться, уменьшая поступление газа. В пределах оптимального температурного интервала количество поступающего газа увеличивается при повышении давления загрузки и увеличении продолжительности выдержки, пока не наступит равновесие между давлением внутри и снаружи матрицы.

Скрытые в матрице поры способны удерживать газ под давлением в течение продолжительного времени и, при условии, что в матрице нет трещин, выделение его ограничивается диффузией сквозь стекловидную матрицу. Хорошее удерживание газа, таким образом, требует соответствующего объема скрытых пор после наполнения газом, и матрица должна быть устойчивой к растрескиванию окружающих тонких слоев.

Не образующие пены углеводные порошки или таблетки не должны вообще содержать белка или содержать только небольшое количество белка, хотя, если необходимо, может добавляться небольшое количество стабилизатора пены для получения порошка с исходными скрытыми порами. Пригодные стабилизаторы пены представляют собой, в основном, белки, такие как казеин или белок пшеницы, и они могут быть добавлены в количестве, например, вплоть до 5 или 10%, точное значение не является критическим. Порошок может содержать любые желаемые антивспенивающие ингредиенты, такие как жиры и соли; активные ингредиенты уместно включать в зависимости от предполагаемой области использования композиции. Поверхностно-активные ингредиенты, помимо белков пшеницы или казеината натрия, могут использоваться для создания в порошке исходных скрытых пор, и примерами таких ингредиентов являются сапонин, поверхностно-активные липиды и иные белки, например лизоцим. Пористость может быть также создана быстрым охлаждением обработанных газом порошков или таблеток, быстрым сбрасыванием повышенного наружного давления при размягченном состоянии (матрицы) или при использовании средств, способствующих текучести, просачиванию, например изобутана или галогенированных хлорфторуглеродов, при повышенном давлении и/или температуре.

В одном воплощении изобретения таблетки или порошки содержат основу напитка, например, кофе, какао, солода или чая. В частности, установлено, что таблетки, содержащие растворимый кофе, могут легко растворяться и диспергироваться. Например, такие таблетки могут содержать растворимый кофе, пенящийся порошок, сахар и вспениватель сливок.

При восстановлении этого порошка или таблетки частицы, содержащие включенный газ, будут трескаться, ломаться или распадаться, тем самым увеличивая определенную площадь поверхности порошка или таблетки, которая ускоряет дисперсию и последующее растворение порошка или таблетки.

Дополнительное преимущество данного изобретения состоит в том, что если инертный газ включен в частицы, его включение будет предохранять любые чувствительные (реакционноспособные) активные ингредиенты, содержащиеся в порошке или таблетке, от взаимодействия с атмосферными газами в результате насыщения порошка или таблетки инертным газом. Во время хранения утечка инертного газа из непосредственного окружения реакционноспособного активного ингредиента будет частично компенсирована очень медленным истечением газа из матрицы. На практике чувствительный активный ингредиент часто бывает восприимчив к окислению, и подходящим инертным газом для защиты является азот, хотя и другие инертные газы также могут успешно использоваться.

Примеры основанных на углеводах таблеток и порошков согласно изобретению включают следующие:

таблетки и порошки для фармацевтического использования, содержащие газ, который обеспечивает улучшенную дисперсию лекарственных средств, которые они включают;

таблетки и порошки, содержащие газ, пищевого назначения, которые показывают улучшенную дисперсию таких веществ, как ферменты, пробиотические бактерии и витамины;

таблетки и порошки, содержащие газ, для пищевого применения, например растворимые пищевые порошки,

таблетки, содержащие газ, в форме конфет, например, для кондитерской промышленности, таблетки и порошки для детского питания и таблетки для кулинарии, например бульонные кубики;

чистящие таблетки или порошки, например таблетки, содержащие средства для чистки контактных линз;

таблетки или жевательные резинки для очистки зубов при сосании/жевании, где скорость растворения может оказывать влияние на поглощение фторида натрия во рту;

таблетки или порошки для животных, например домашних животных, содержащие газ, ароматизаторы, питательные ингредиенты, например витамины или пробиотические микроорганизмы и их метаболиты;

таблетки и порошки, содержащие агрохимические ингредиенты, например фертилизаторы, пестициды или гербициды;

таблетки и порошки, содержащие косметические компоненты, например средства для душа или ванны.

Понятно, что эта технология должна также быть применимой в других отраслях, например для продуктов домашнего хозяйства.

Изобретение иллюстрируется следующими примерами.

Пример 1. Изготовление таблеток и порошков

Таблетки изготавливают из высушенных при замораживании аморфных порошков (размер частиц от 0,4 до 0,9 мм), состоящих из мальтодекстрина DE12 (Sugro, AG Switzerland) с различающимся процентным содержанием казеината натрия (Säntis, AG Switzerland) (таблица 1). Таблетки (диаметр 38 мм, высота 2 мм) уплотняют при расчетном таблетирующем давлении 260 МПа с помощью стандартного ручного пресса (PRM 60 РНР, Rassent, France).

Таблица 1
Состав образцов, используемых для прессования таблеток
Образец (мас.%) Мальтодекстрин DE12 (% вес.)Казеинат натрия
190 10
2 80 20
3 70 30

Пример 2. Наполнение газом

Процедура наполнения образцов азотом состоит в следующем. Во-первых, образцы прессуют в присутствии азота при комнатной температуре в закрытом наглухо автоклаве с водяной рубашкой (объем 5 л, тип DN 2000 (Meili S.A., Switzerland), максимальное давление 30 бар). Автоклав оборудован датчиком температуры (РТ-100, № АС 1912, Rotronic, Switzerland), датчиком относительной влажности (HP 101 А - L5 - ES1W, Rotronic, Switzerland), датчиком давления (ED 510/354, 461/105, Haenni, Switzerland) и мешалкой (UFM1-F, SAIA). Во-вторых, порошок нагревают под давлением до температур свыше температуры стеклования. Выше Tg газ легко проникает в образец. Газ удерживается в образце при сбрасывании давления в аппарате только после охлаждения порошка до температур ниже температуры стеклования. Общее количество поглощенного газа может меняться при варьировании температуры наполнения, давления и времени свыше Tg.

Пример 3. Таблетки

Образцы порошков 3 с фактической массой 0,32 (см. пример 1 выше) легко уплотняют (давление прессования ~ 20 кПа) и загружают в автоклав в соответствии со способом, описанным выше. Давление прессования гораздо ниже давления, обычно применяемого при производстве таблеток. При понижении давления прессования могут быть получены таблетки с более высокой скрытой и открытой пористостью. В этой связи даются отсылки на фиг.1а и 1b, на которых представлена таблетка (фиг.1а) и гранула в таблетке (фиг.1b).

Пояснения к чертежам:

1 - твердая матрица: матрица, имеющая как открытые, так и скрытые поры;

2 - пустоты: пространство или промежутки между частицами;

3 - открытая пора: полость или канал, соединяющиеся с поверхностью твердой матрицы;

4 - микропора (пора < 20);

5 - скрытая пора: полость, не соединяющаяся с поверхностью;

6 - трещина: совокупность тонких изломов внутри твердой матрицы;

7 - связанные поры: одна пора соединена с другой порой или пустотой.

Давление наполнения составляло 50 бар, время наполнения 60 мин, температура наполнения 90°С. Плотность таблетки до наполнения газом составляет 1,3532 г/см3 и после наполнения газом 1,3069 г/см 3. После наполнения (насыщения) газом скрытая пористость была определена как 13%, открытая пористость - 58%, а таблетка содержала 5,3 мл/г газа и обладала улучшенной растворимостью.

Пример 4. Порошок

Пробу порошка 2 с фактической массой 0,23 прессуют в автоклаве согласно вышеописанному способу. Давление 50 бар, время выдержки 1 час, температура 120°С. После обработки газом порошок содержит скрытые поры 52%, имеет плотность 0,73 г/см3 и 25 мл газа/г. При восстановлении этот порошок растворяется очень быстро.

Пример 5. Таблетки для напитков

Таблетки, полученные уплотнением следующих двух исходных смесей:

ОбразецРастворимый кофе1 (мас.%) Пенящийся порошок2 (мас.%) Сахароза3 (мас.%) Взбивающий сливки порошок4 (мас.%)
167 -33 -
2 15 25- 60
1 Высушенный распылением порошок растворимого кофе.

2 Пенящийся углеводный порошок (основа - сливки).

3 Кристаллическая сахароза.

4 Высушенный распылением порошок сливок.

Таблетки (диаметр 2 см, толщина около 7 мм, таблетка массой около 4 г) были получены прессованием от низкого до среднего уровня давления с помощью ручного таблеточного пресса. Образцы после прессования были наполнены азотом. Условия наполнения: 90 бар и 95°С. Время наполнения - 30 мин. После этого проводили испытания растворимости в воде при температуре около 70°С. Наполненные газом таблетки растворялись заметно более быстро, чем те, что не содержали газа. Образец, содержащий взбиватель сливок, также образовывал некоторое количество пены сверху на напитке.

Класс A61K9/14 в виде частиц, например порошки

композиции матриксных носителей, способы и применения -  патент 2528895 (20.09.2014)
композиции телмисартана в форме наночастиц и способ их получения -  патент 2526914 (27.08.2014)
пептидные лиганды соматостатиновых рецепторов -  патент 2525468 (20.08.2014)
композиции и способы доставки фармакологических агентов -  патент 2522977 (20.07.2014)
способ коррекции морфофункционального состояния спортсменов -  патент 2521324 (27.06.2014)
усовершенствованное устройство и способ доставки лекарственного аппарата -  патент 2519959 (20.06.2014)
усовершенствование всасывания терапевтических средств через слизистые оболочки или кожу -  патент 2519193 (10.06.2014)
фармацевтическая композиция -  патент 2519090 (10.06.2014)
композиция, на основе гидрофобных агентов и способ ее получения(варианты) -  патент 2518240 (10.06.2014)
способ повышения водорастворимости слаборастворимых веществ -  патент 2517111 (27.05.2014)

Класс A61K9/26 в виде разрозненных частиц в поддерживающей их матрице

лекарственный препарат винкамина в форме матричных таблеток для улучшения мозгового кровообращения и способ его изготовления -  патент 2525433 (10.08.2014)
слой для защиты твердых дозированных форм от механического воздействия -  патент 2500389 (10.12.2013)
системы доставки лекарственного средства, содержащие слабощелочной селективный 5-ht3, серотониновый блокатор и органические кислоты -  патент 2490012 (20.08.2013)
пероральная основа в виде пленки -  патент 2488385 (27.07.2013)
фармацевтические композиции энтакапона, леводопы и карбидопы с улучшенной биодоступностью -  патент 2485947 (27.06.2013)
экструзия горячего расплава множественных частиц модифицированного высвобождения -  патент 2483713 (10.06.2013)
твердые лекарственные формы, содержащие тадалафил -  патент 2456989 (27.07.2012)
твердая лекарственная форма пролонгированного действия нестероидного противовоспалительного средства кетопрофен, способ получения -  патент 2448690 (27.04.2012)
композиция для перорального применения с регулируемым высвобождением биологически активных веществ -  патент 2410085 (27.01.2011)
препарат матричного типа с замедленным высвобождением, содержащий основное лекарственное средство или его соль, и способ его получения -  патент 2390354 (27.05.2010)

Класс A61K47/26 углеводы

фармацевтические и/или пищевые композиции на основе короткоцепочечных жирных кислот -  патент 2528106 (10.09.2014)
коронародилатирующее лекарственное средство -  патент 2526118 (20.08.2014)
фармацевтический ингаляционный препарат для лечения бронхиальной астмы и хронической обструктивной болезни легких, содержащих в качестве активного вещества микронизированный тиотропия бромид, и способ его получения -  патент 2522213 (10.07.2014)
новые защитные композиции для рекомбинантного фактора viii -  патент 2510279 (27.03.2014)
ингаляционный препарат для лечения бронхиальной астмы и хронической обструктивной болезни легких и способ его получения -  патент 2504382 (20.01.2014)
способ получения высокодисперсных фармацевтических композиций сальбутамола -  патент 2504370 (20.01.2014)
усилитель чрескожного всасывания и трансдермальный препарат с его использованием -  патент 2504363 (20.01.2014)
маннит, распадающийся в полости рта -  патент 2500388 (10.12.2013)
стабильная изотоническая лиофилизированная протеиновая композиция -  патент 2497500 (10.11.2013)
фармацевтическая композиция для модифицированного высвобождения -  патент 2495666 (20.10.2013)

Класс A61J3/00 Способы и устройства для изготовления лекарственных форм (химическая часть см в соответствующих классах)

способ изготовления таблетки и установка, подходящая для применения этого способа -  патент 2529785 (27.09.2014)
способ получения микрокапсул лекарственных препаратов группы цефалоспоринов в конжаковой камеди в толуоле -  патент 2525158 (10.08.2014)
способ получения микросфер для приготовления инъецируемой лекарственной формы диклофенака, композиция и лекарственная форма -  патент 2524649 (27.07.2014)
способ получения таблеток рутина -  патент 2523562 (20.07.2014)
способ инкапсуляции фенбендазола -  патент 2522267 (10.07.2014)
способ инкапсуляции фенбендазола -  патент 2522229 (10.07.2014)
фармацевтическая дозированная форма, содержащая полимерную композицию-носитель -  патент 2519679 (20.06.2014)
фармацевтическая композиция иматиниба или его фармацевтически приемлемой соли, способ ее получения и способ(ы) лечения -  патент 2517216 (27.05.2014)
способ получения микрокапсул лекарственных препаратов группы цефалоспоринов в конжаковой камеди в бутиловом спирте -  патент 2517214 (27.05.2014)
способ обработки упаковки с однократной дозой лекартвенного препарата -  патент 2517140 (27.05.2014)
Наверх