способ регистрации включений твердых фракций в газовом потоке

Классы МПК:G01N15/06 определение концентрации частиц в суспензиях
Автор(ы):, , , ,
Патентообладатель(и):Общество с ограниченной ответственностью "Очаг" (RU)
Приоритеты:
подача заявки:
2009-02-20
публикация патента:

Способ регистрации включений твердых фракций в газовом потоке основан на регистрации числа соударений включений твердых фракций с внутренней поверхностью трубы. Регистрацию осуществляют путем приема акустических сигналов, формирующихся при соударении, датчиками, расположенными на внешней поверхности трубы. При этом акустический сигнал, возникающий при соударении включения с внутренней поверхностью трубы, принимают, по крайней мере, в двух пространственно разнесенных по поверхности трубы точках. Регистрируют соударение, если разность времен прихода акустического сигнала в эти точки соответствует заданным соотношениям. В качестве заданных принимают соотношения между расстояниями между датчиками и разновременностями прихода волны к датчикам. Техническим результатом изобретения является повышение точности, расширение функциональных возможностей и области применения регистратора включений твердых фракций в газовом потоке. 1 з.п. ф-лы., 1 ил. способ регистрации включений твердых фракций в газовом потоке, патент № 2408868

способ регистрации включений твердых фракций в газовом потоке, патент № 2408868

Формула изобретения

1. Способ регистрации включений твердых фракций в газовом потоке, основанный на регистрации числа соударений включений твердых фракций с внутренней поверхностью трубы путем приема акустических сигналов, формирующихся при соударении, датчиками, расположенными на внешней поверхности трубы, характеризующийся тем, что акустический сигнал, возникающий при соударении включения с внутренней поверхностью трубы, принимают, по крайней мере, в двух пространственно разнесенных по поверхности трубы точках, и регистрируют соударение, если разность времен прихода акустического сигнала в эти точки соответствует заданным соотношениям.

2. Способ по п.1, отличающийся тем, что в качестве заданных принимают соотношения между расстояниями между датчиками и разновременностями прихода волны к датчикам.

Описание изобретения к патенту

Изобретение относится к способу обеспечения хранения и транспортировки природного газа и может использоваться в газовой промышленности.

При анализе выноса песка из газовых скважин основным вопросом является оценка допустимости выноса, при этом под допустимым понимается вынос песка, не превышающий аварийные нормы эксплуатации скважин.

Контроль выноса как твердых, так и жидких примесей из газовых скважин должен быть уровневым, с разбивкой всего диапазона регистрации на уровни, а численные значения границ концентраций примесей на каждом уровне должны соответствовать потребностям технологических служб газодобычи.

Анализ известных технических решений показывает, что измерение массы диспергированных твердых примесей в газовом потоке может быть произведено инвазивными детекторами.

Известен способ контроля выноса песка из газовой скважины (патент РФ № 2285909, опубликован 20.10.2006), согласно которому в поток газа вводят стержень, покрытый клееобразным веществом. Выдерживают стержень в потоке некоторое время и затем извлекают. Растворителем обильно смывают клееобразное вещество с застрявшими в нем песчинками и полученный раствор фильтруют. По наличию и количеству осадка судят о факте и интенсивности выноса песка.

Также известен способ и устройство для контроля массового расхода транспортируемого по пневмопроводу измельченного твердого материала (патент РФ № 2280843, опубликован 27.07.2006), согласно которым из потока газа-носителя с помощью сопла, расположенного во входном патрубке измерительной камеры, формируют плотную струю газа со взвешенными в нем частицами. Сформированную струю направляют на переднюю поверхность головки акустического датчика (отражателя) в виде стержня, расположенного в измерительной камере на оси входного патрубка. Акустический датчик, воспринимающий ударное воздействие частиц твердого материала, связан с акустическим преобразователем, измеряющим частоту и амплитуду акустических волн, генерируемых в стержне, по которым определяют массовый расход.

Недостатком вышеуказанных способов является необходимость вмешательства в конструкцию газопровода, сложность установки и обслуживания, недолговечность элементов, погруженных в поток газа с песком, вследствие абразивного износа. В связи с этим становится актуальной разработка неинвазивных детекторов твердых примесей. Они должны определять наличие и концентрацию твердых примесей (песка) в газовом потоке, при этом - устанавливаться на наружной поверхности трубы газопровода.

Существующие неинвазивные акустические устройства (датчики) регистрации выноса песка из газовых скважин обладают общим принципиальным недостатком - отсутствием локализованной на трубе зоны контроля с известной формой и площадью, исключительно в пределах которой должны регистрироваться акты соударений отдельных песчинок с внутренней поверхностью трубы. Как следствие, подобные неинвазивные детекторы реагируют на посторонние шумы, в том числе и от песка, воздействующего на внутреннюю поверхность трубы на неконтролируемых расстояниях от места их установки. Такие шумы, в реальных условиях эксплуатации газовых хранилищ (скважин), могут быть одного уровня с регистрируемыми полезными сигналами.

Известен способ регистрации песка в потоке газа - Монитор частиц с цифровой обработкой сигналов DSP-06 компании ClampOn (www.clampon.com.).

Способ заключается в том, что на газопровод устанавливается блок, содержащий один пьезоэлектрический датчик и процессорный блок обработки сигнала датчика. Проблема селекции шумов и выделение полезных сигналов от ударов твердых частиц о внутреннюю поверхность трубы решается с помощью компьютерной техники и применения различных математических методов обработки сигнала.

Способ, реализованный в Мониторе частиц DSP-06, является наиболее близким по технической сущности к заявляемому способу и поэтому выбран в качестве прототипа.

Недостатки прототипа:

- отсутствие локализованной зоны контроля с известными геометрическими характеристиками;

- необходимость использования достаточно мощной вычислительной техники (минимальное требование - процессор Pentium III, или его эквивалент с 512 Мб RAM) и, соответственно, высокое энергопотребление (на уровне единиц ватт). Высокое энергопотребление не позволяет применять устройства, основанные на данном способе, в условиях отсутствия стационарного электропитания, то есть непосредственно на устье газовых скважин, где уровень посторонних шумов является минимальным;

- необходимость использования кабельных линий связи.

Задача заявляемого способа состоит в повышении точности, расширении функциональных возможностей и области применения регистратора включений твердых фракций в газовом потоке.

Для достижения технического результата в способе регистрации включений твердых фракций в газовом потоке, заключающемся в том, что регистрацию числа соударений включений твердых фракций с внутренней поверхностью трубы путем приема акустических сигналов, формирующихся при соударении, датчиками, расположенными на внешней поверхности трубы, осуществляют путем приема акустических сигналов по крайней мере, в двух пространственно разнесенных по поверхности трубы точках, и регистрируют соударение, если разность времен прихода акустического сигнала в эти точки удовлетворяет заданным соотношениям. В качестве исходных данных для заданных соотношений можно принять расстояние между датчиками и разновременность прихода волны к датчикам.

Таким образом, в основу способа положен принцип локации источника акустического сигнала, который состоит из аналоговой обработки последнего, с выделением частот толщинных колебаний стенки трубы, и простейшего алгоритма цифровой обработки с последующим счетом числа событий.

На чертеже представлены экспериментальные кривые зон чувствительности устройства, содержащего два акустических датчика. Кривая а) соответствует заданному допустимому времени разновременности срабатывания каналов способ регистрации включений твердых фракций в газовом потоке, патент № 2408868 =18.9 мкс, кривая б) соответствует способ регистрации включений твердых фракций в газовом потоке, патент № 2408868 =9.45 мкс.

Разработаны пилотные образцы устройств, на которых была продемонстрирована осуществимость заявляемого способа.

Возможность использования принципа локации при детектировании твердых включений теоретически исследовалась для случая плоской локации, учитывая, что анализ соударений песчинок с внутренней поверхностью трубы вполне корректно проводить на ее плоской развертке, поскольку толщина стенки трубы много меньше диаметра (например, труба с внутренним диаметром 100 мм имеет толщину стенки, равную 7 мм).

Пусть на указанной развертке, декартовой координатной плоскости (X0Y), ось 0Y совпадает с осью трубы, ось 0Х лежит в боковой цилиндрической поверхности, а система из двух акустических датчиков D1 и D2 расположена так, что координаты первого из них равны (0, -с), второго - (0, с). Пусть, далее, соударение песчинки с плоскостью происходит в произвольной точке с координатами (x, y).

Зоной чувствительности акустической системы будем считать часть координатной плоскости, попадание песчинки на которую является событием регистрируемым, попадание же песчинки на плоскость вне зоны должно системой игнорироваться. Критерий, задающий зону чувствительности рассматриваемых двух датчиков, определим следующим образом: разновременность прихода акустической волны к ним не должна превышать некоторого заданного значения способ регистрации включений твердых фракций в газовом потоке, патент № 2408868 . Тогда границы зоны чувствительности определяются равенством параметра способ регистрации включений твердых фракций в газовом потоке, патент № 2408868 и регистрируемой разновременности. Это эквивалентно следующему условию: на границе зоны чувствительности разность расстояний от точки соударения песчинки с координатной плоскостью до точек, в которых расположены датчики, является величиной постоянной.

Таким образом, границы зоны чувствительности системы двух датчиков представляют собой гиперболу, в фокусах которой располагаются датчики, самой же зоной является часть координатной плоскости, ограниченная ветвями гиперболы и содержащая ее мнимую ось.

Следовательно, для однозначного определения зоны чувствительности системы двух датчиков, расположенных на плоскости из материала с известной скоростью распространения акустической волны, необходимо задать две величины:

- расстояние между датчиками с,

- разновременность прихода волны к датчикам способ регистрации включений твердых фракций в газовом потоке, патент № 2408868 .

Поскольку задание разновременности способ регистрации включений твердых фракций в газовом потоке, патент № 2408868 , при фиксированном расстоянии между датчиками с, однозначно определяет границы и, соответственно, площадь зоны чувствительности, то измерение количества соударений песчинок с зоной в единицу времени позволяет решать задачу об определении количественных характеристик выноса песка. Кроме того, изменяя параметр способ регистрации включений твердых фракций в газовом потоке, патент № 2408868 (например, командой по радио или кабельному каналу), можно управлять площадью зоны чувствительности, то есть разрешением устройства.

Зона чувствительности системы из 3 датчиков - D0, D1, D2 может быть определена как пересечение зон чувствительности двух подсистем D0-D1 и D0-D2.

Было проведено тестирование пилотного экземпляра устройства с двумя датчиками с целью экспериментального определения границ зоны чувствительности. Испытания проводились при разных значениях величины разновременности способ регистрации включений твердых фракций в газовом потоке, патент № 2408868 прихода на датчики акустических импульсов, генерируемых ударами частиц. Полученные результаты (см. чертеж) показали хорошее совпадение с теорией, что доказывает возможность осуществления изобретений.

Преимуществами данной разработки являются:

- возможность формирования замкнутой зоны контроля с регулируемой в процессе измерений площадью, что позволяет, с одной стороны, существенно понизить влияние посторонних шумов на точность измерений, с другой - получать количественные характеристики выноса песка;

- неинвазивный способ измерения, легкость наружного монтажа, целесообразного на "колене" или в местах сужения потока, где соударения песчинок с внутренней поверхностью трубы наиболее вероятны;

- низкое энергопотребление, возможность автономной работы в течение года непосредственно на устьях газовых скважин;

- невысокая стоимость;

- простота, а следовательно, надежность;

- возможность быстрой и массовой реализации.

Класс G01N15/06 определение концентрации частиц в суспензиях

способ измерения продольного и сдвигового импендансов жидкостей -  патент 2529634 (27.09.2014)
способ и устройство для обнаружения загрязнений в текучей среде -  патент 2524057 (27.07.2014)
ультразвуковой способ контроля концентрации магнитных суспензий -  патент 2520166 (20.06.2014)
способ и устройство для быстрого анализа образцов текучего вещества с использованием фильтра -  патент 2516580 (20.05.2014)
способ приготовления наносуспензии для изготовления полимерного нанокомпозита -  патент 2500695 (10.12.2013)
способ контроля сухого остатка моющих растворов при машинной промывке шерсти -  патент 2498270 (10.11.2013)
устройство датчика для целевых частиц в пробе -  патент 2476858 (27.02.2013)
способ диагностики агрегатов машин по параметрам работающего масла -  патент 2473884 (27.01.2013)
способ оценки концентрации смолоподобных веществ в суспензии -  патент 2472135 (10.01.2013)
способ и устройство для анализа магнитного материала и анализатор, содержащий это устройство -  патент 2471170 (27.12.2012)
Наверх