способ определения технического состояния скважин

Классы МПК:E21B47/10 определение места оттока, притока или колебаний жидкости 
E21B47/12 средства передачи сигналов измерения из скважины на поверхность, например каротаж в процессе бурения
G01V5/10 с использованием источников нейтронного излучения
Автор(ы):, , , , , , , , , ,
Патентообладатель(и):Общество с ограниченной ответственностью "Газпром добыча Краснодар" (ООО "Газпром добыча Краснодар") (RU)
Приоритеты:
подача заявки:
2007-11-30
публикация патента:

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для определения технического состояния скважин методом радиоактивного каротажа. Способ включает спуск приборов радиоактивного каротажа до забоя скважины, запись кривой распределения естественной гамма-активности от забоя до устья скважины, облучение потоком нейтронов с помощью приборов импульсного нейтрон-нейтронного каротажа. Записывают кривую наведенной гамма-активности. Сопоставляют кривые распределения естественной и наведенной гамма-активности вдоль оси скважины. При этом геофизические исследования проводят в работающей скважине через лубрикатор. Облучение потоком нейтронов осуществляют в интервалах выше и ниже перфорационных отверстий. Запись естественной и наведенной гамма-активности осуществляют с помощью дополнительного датчика, установленного на продуктопроводе на устье скважины. Причем регистрация гамма-активности производится до облучения заколонного пространства, после облучения интервала ствола скважины, расположенного ниже интервала перфорации и выше указанного интервала в зоне залегания водоносных пластов. Источники обводнения продукции скважины определяют по форме кривых наведенной гамма-активности, одногорбая форма свидетельствует о подтоке подошвенных вод, а двугорбая - о поступлении вод из вышележащих пластов. Техническим результатом является повышение достоверности определения качества цементирования скважин, выявления дефектов цементного кольца за эксплуатационной колонной, интервалов негерметичности заколонного пространства, источников поступления вод и обводнения продукции скважины. 1 ил. способ определения технического состояния скважин, патент № 2405934

способ определения технического состояния скважин, патент № 2405934

Формула изобретения

Способ определения технического состояния скважин, включающий спуск приборов радиоактивного каротажа до забоя скважины, запись кривой распределения естественной гамма-активности от забоя до устья скважины, облучение потоком нейтронов с помощью приборов импульсного нейтрон-нейтронного каротажа с последующей записью кривой наведенной гамма-активности, сопоставление кривых распределения естественной и наведенной гамма-активности вдоль оси скважины, отличающийся тем, что геофизические исследования проводят в работающей скважине через лубрикатор, облучение потоком нейтронов осуществляют в интервалах выше и ниже перфорационных отверстий, запись естественной и наведенной гамма-активности осуществляют с помощью дополнительного датчика, установленного на продуктопроводе на устье скважины, причем регистрация гамма-активности производится до облучения заколонного пространства, после облучения интервала ствола скважины, расположенного ниже интервала перфорации и выше указанного интервала в зоне залегания водоносных пластов, а источники обводнения продукции скважины определяют по форме кривых наведенной гамма-активности, одногорбая форма свидетельствует о подтоке подошвенных вод, а двугорбая - о поступлении вод из вышележащих пластов.

Описание изобретения к патенту

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для определения технического состояния скважин методом радиоактивного каротажа: дефектов цементного кольца за эксплуатационной колонной, интервалов негерметичности заколонного пространства, источников поступления вод и обводнения продукции скважины.

Известен способ оценки качества цементирования скважин, включающий:

- спуск скважинного прибора, содержащего источник и приемник радиоактивного излучения;

- запись (на подъеме) кривых изменения интенсивности излучения, по которым судят о плотности и равномерности заполнения заколонного пространстве скважин (в функции глубины и по периметру) цементным тампонажным составом (Ю.А.Гулин, Д.А.Бернштейн, П.А.Прямов. «Акустические и радиометрические методы определения качества цементирования нефтяных и газовых скважин». М., Недра, 1971 г., с.5-27) (1).

Известный способ имеет следующие недостатки:

- не выявляет трещины и другие дефекты цементного кольца, мало изменяющие объемную плотность среды в зоне контроля;

- биологически опасен;

- требует сложных работ по ликвидации последствий радиационной аварии при оставлении прибора с источником радиоактивного излучения на забое скважины.

Известно также применение метода термометрии для обнаружения перетоков флюидов в заколонном пространстве скважин по регистрируемым температурным аномалиям (Журнал «Нефтяное хозяйство», 1978 г., № 11, с.51-53) (2).

Однако с помощью метода термометрии оказывается возможным выявление только значительных по объему перетоков флюидов, приводящих к заметным температурным аномалиям, причем в газовых скважинах положительные и отрицательные температурные аномалии возникают еще и от эффектов сжатия и расширения движущегося в заколонном пространстве скважин газа (по каналам перетока), т.е. в общем случае тепловые эффекты неоднозначны.

Поэтому определить интервалы негерметичности заколонного пространства и источники обводнения продукции газовых скважин в большинстве случаев невозможно.

Наиболее близким по технической сущности и достигаемому результату к заявляемому способу является способ определения технического состояния скважин, включающий глушение и подготовку скважины, спуск приборов радиоактивного каротажа до забоя скважин, запись кривой распределения естественной гамма-активности от забоя до устья скважин, облучение потоком нейтронов с помощью приборов импульсного нейтрон-нейтронного каротажа с последующей записью кривой наведенной гамма-активности, сопоставление кривых распределения естественной и наведенной гамма-активности вдоль оси скважины и определения интервалов негерметичности заколонного пространства скважин (Патент RU № 2199007, кл. Е21В 47/10, опубл. 2003 г.) (3).

Однако с помощью известного способа определяют только интервалы приемистости в негерметичном заколонном пространстве скважины (выше и ниже интервала перфорации), а интервалы, через которые происходит поступление пластовых вод, и причины обводнения продукции скважины оказываются не выявлены.

Задачей настоящего изобретения является повышение достоверности определения качества цементирования скважин, выявление дефектов цементного кольца за эксплуатационной колонной, интервалов негерметичности заколонного пространства, источников поступления вод и обводнения продукции скважины.

Сущность настоящего изобретения заключается в том, что в известном способе определения технического состояния скважин, включающем спуск приборов радиоактивного каротажа до забоя скважины, запись кривой распределения естественной гамма-активности от забоя до устья скважины, облучение потоком нейтронов с помощью приборов импульсного нейтрон-нейтронного каротажа с последующей записью кривой наведенной гамма-активности, сопоставление кривых распределения естественной и наведенной гамма-активности вдоль оси скважины, согласно изобретению, геофизические исследования проводят в работающей скважине через лубрикатор, облучение потоком нейтронов осуществляют в интервалах выше и ниже перфорационных отверстий, запись естественной и наведенной гамма-активности осуществляют с помощью дополнительного датчика, установленного на продуктопроводе на устье скважины, причем регистрация гамма-активности производится до облучения заколонного пространства, после облучения интервала ствола скважины, расположенного ниже интервала перфорации и выше указанного интервала в зоне залегания водоносных пластов, а источники обводнения продукции скважины определяют по форме кривых наведенной гамма-активности, одногорбая форма свидетельствует о подтоке подошвенных вод, а двугорбая - о поступлении вод из вышележащих пластов.

Способ осуществляют следующим образом (см. чертеж).

- в исследуемую скважину, обсаженную эксплуатационной колонной 1, спускают с помощью каротажного подъемника 2 на каротажном кабеле 3 скважинный прибор импульсного нейтрон-нейтронного каротажа 4 через лубрикатор 5 и фонтанную арматуру 6 в призабойную зону 7 ниже продуктивного пласта 8 и интервала перфорации 9;

- на устье скважины устанавливают наземный датчик гамма-излучения 10 на продуктопроводе 11 и регистрируют фоновые значения гамма-активности флюида (газоводоконденсатной смеси), поступающего через перфорационные отверстия (не показаны) в интервале перфорации 9;

- облучают участок ствола скважины ниже интервала перфорации 9 (призабойную зону) и регистрируют изменение показаний датчика гамма-активности 10, установленного на продуктопроводе 11, при помощи полевого вычислительного комплекса 12.

При этом, в случае подтока подошвенных вод, содержащих ионы натрия и хлора, через дефекты цементного кольца снизу (из подстилающего водоносного пласта 13) произойдет увеличение показаний датчика гамма-активности 10 за счет наведенной гамма-активности, которая после окончания облучения приборами импульсного нейтрон-нейтронного каротажа 4 снизится. Таким образом, формируется и регистрируется один всплеск наведенной гамма-активности.

Для выявления возможного обводнения продукции скважины от вышележащего водоносного пласта исследования проводят в следующей последовательности:

- прибор импульсного нейтрон-нейтронного каротажа 4 поднимают от забоя, устанавливают выше интервала перфорации напротив вышележащего водоносного пласта 14 и облучают его через эксплуатационную колонну;

- регистрируют значения гамма-активности с помощью датчика 10, установленного на устье скважины на продуктопроводе 11. При этом, в случае подтока вод, содержащих ионы натрия и хлора, через дефекты цементного кольца из верхнего водоносного пласта 14, произойдет увеличение показаний датчика 10 за счет наведенной гамма-активности внутри эксплуатационной колонны 1, а также и в заколонном пространстве.

После окончания облучения приборами импульсного нейтрон-нейтронного каротажа 4 к датчику гамма-активности 10 сначала подойдет пачка флюида, содержащегося внутри эксплуатационной колонны, а затем - пачка флюида, содержащегося в заколонном пространстве.

Таким образом, формируются и регистрируются два всплеска наведенной гамма-активности.

Источник обводнения продукции определяют по форме кривой наведенной гамма-активности, причем одногорбая форма свидетельствует о подтоке подошвенных вод, а двугорбая - о поступлении вод из вышележащих пластов.

Заявляемый способ позволяет повысить достоверность определения качества цементирования скважин, выявить дефекты цементного кольца за эксплуатационной колонной, интервалы негерметичности заколонного пространства, источники поступления вод и обводнения продукции скважины.

Класс E21B47/10 определение места оттока, притока или колебаний жидкости 

способ исследования скважины -  патент 2527960 (10.09.2014)
способ гидродинамических исследований газонасыщенных пластов без выпуска газа на поверхность -  патент 2527089 (27.08.2014)
способ контроля за процессом обводнения газовой скважины -  патент 2526965 (27.08.2014)
способ определения герметичности подземных хранилищ газа -  патент 2526434 (20.08.2014)
способ идентификации скважины с измененным массовым расходом жидкости куста нефтяных скважин -  патент 2521623 (10.07.2014)
способ определения обводненности продукции нефтедобывающей скважины -  патент 2520251 (20.06.2014)
устройство для определения интервалов водопритока и их изоляции в открытых стволах многозабойных горизонтальных скважин -  патент 2514009 (27.04.2014)
способ исследования многозабойной горизонтальной скважины -  патент 2513961 (20.04.2014)
способ определения остаточного содержания газа в жидкости -  патент 2513892 (20.04.2014)
устройство для измерения дебита скважин -  патент 2513891 (20.04.2014)

Класс E21B47/12 средства передачи сигналов измерения из скважины на поверхность, например каротаж в процессе бурения

способы и системы для скважинной телеметрии -  патент 2529595 (27.09.2014)
способ передачи информации из скважины по электрическому каналу связи и устройство для его осуществления -  патент 2528771 (20.09.2014)
способ наземного приема-передачи информации в процессе бурения и устройство для его реализации -  патент 2527962 (10.09.2014)
уневерсальный переходник для скважинного бурильного двигателя, имеющий провода или порты -  патент 2524068 (27.07.2014)
система и способ изоляции тока, подаваемого на электрическую нагрузку в скважине -  патент 2522825 (20.07.2014)
порт связи для использования на скважинном измерительном приборе -  патент 2522340 (10.07.2014)
способ мониторинга и управления добывающей нефтяной скважиной с использованием батарейного питания в скважине -  патент 2515517 (10.05.2014)
установка одновременно-раздельной эксплуатации двух пластов одной скважиной -  патент 2513896 (20.04.2014)
кабельная сборка увеличенной длины для применения в углеводородных скважинах -  патент 2513814 (20.04.2014)
интегрированная система непрерывного наблюдения -  патент 2513600 (20.04.2014)

Класс G01V5/10 с использованием источников нейтронного излучения

способ импульсного нейтронного каротажа и устройство для его осуществления -  патент 2523770 (20.07.2014)
способ определения плотности подземных пластов, используя измерения нейтронного гамма-каротажа -  патент 2518876 (10.06.2014)
система и способ коррекции влияния диаметра скважины и ее гидродинамического совершенства при измерениях пористости методом нейтронного каротажа -  патент 2518591 (10.06.2014)
способ определения состояния продуктивного пласта импульсным нейтронным методом -  патент 2517824 (27.05.2014)
нейтронный скважинный прибор для измерения пористости с увеличенной точностью и уменьшенными литологическими влияниями -  патент 2515111 (10.05.2014)
способ и устройство для определения во время бурения насыщения водой пласта -  патент 2503981 (10.01.2014)
способ определения коэффициента нефтегазонасыщенности по комплексу гис на основании импульсных нейтронных методов каротажа -  патент 2503040 (27.12.2013)
скважинное измерение посредством нейтронной активации -  патент 2502096 (20.12.2013)
абсолютные концентрации элементов из ядерной спектроскопии -  патент 2502095 (20.12.2013)
определение пористости из длины замедления тепловых нейтронов, сечения захвата тепловых нейтронов и объемной плотности пласта -  патент 2475783 (20.02.2013)
Наверх