способ регулирования молекулярно-массовых характеристик бутадиеновых каучуков
Классы МПК: | C08F136/06 бутадиен C08F36/06 бутадиен |
Автор(ы): | Бусыгин Владимир Михайлович (RU), Гильманов Хамит Хамисович (RU), Борейко Наталья Павловна (RU), Трифонова Ольга Михайловна (RU), Бурганов Табриз Гильмутдинович (RU), Амирханов Ахтям Талипович (RU), Исмагилова Лилия Зайтуновна (RU), Ахметов Ильдар Гумерович (RU) |
Патентообладатель(и): | Открытое акционерное общество "Нижнекамскнефтехим" (RU) |
Приоритеты: |
подача заявки:
2009-10-15 публикация патента:
27.10.2010 |
Изобретение может быть использовано в нефтехимической и химической отраслях промышленности. Описан способ регулирования молекулярно-массовых характеристик бутадиеновых каучуков, полученных по способу, включающему стадии полимеризации, усреднения, дегазации и сушки. Молекулярно-массовые характеристики регулируют на стадии усреднения раствора полученного полимера. Для этого добавляют раствор полимера с предварительно привитыми иминоксильными группами. Раствор получают промывкой при нагревании реакционного оборудования 0,001-20,0 мас.% раствором стабильного иминоксильного радикала общей формулы (R'NO):
где R1 - оксо-, окси-, оксим- группы,
R2 - алкильная группа от 1 до 4 атомов углерода. Количество привитых иминоксильных групп составляет 0,5-30 мас.%. Соотношение исходного полимера в усреднителе и добавляемого полимера с привитыми иминоксильными группами составляет 1:(0,0003-0,3). Технический результат - возможность регулирования молекулярно-массовых характеристик полимера и доведения их до требуемых по окончании процесса полимеризации. 1 табл.
Формула изобретения
Способ регулирования молекулярно-массовых характеристик бутадиеновых каучуков, полученных по способу, включающему стадии полимеризации, усреднения, дегазации и сушки, отличающийся тем, что регулируют молекулярно-массовые характеристики на стадии усреднения раствора полученного полимера путем добавления в него раствора полимера с предварительно привитыми иминоксильными группами, полученного промывкой при нагревании реакционного оборудования 0,001-20,0 мас.% раствором стабильного иминоксильного радикала общей формулы (R'NO):
где R1 - оксо-, окси-, оксим-группы,
R2 - алкильная группа от 1 до 4 атомов углерода,
при этом количество привитых иминоксильных групп составляет 0,5-30 мас.%, при этом соотношение исходного полимера в усреднителе и добавляемого полимера с привитыми иминоксильными группами составляет 1:(0,0003-0,3).
Описание изобретения к патенту
Изобретение относится к способам регулирования молекулярных характеристик бутадиеновых каучуков и может быть использовано в нефтехимической и химической отраслях промышленности в процессах производства этих полимеров.
Известно, что существенное влияние на свойства любых полимеров оказывает молекулярная масса и молекулярно-массовое распределение (молекулярные характеристики). Так низкомолекулярные фракции полимеров облегчают их течение и перерабатываемость, а высокомолекулярные - способствуют повышению прочности полимеров и резин на их основе. Для каждой марки каучука предпочтителен тот или иной фракционный состав.
Известно, что для регулирования молекулярных характеристик полимера проводят тщательный подбор условий проведения технологического процесса: соотношение компонентов и дозировки каталитического комплекса, температуры и времени реакции, типа реактора и перемешивающего устройства (Савельянов В.П. Общая химическая технология полимеров. М: ИКЦ Академкнига, - 2007).
Известно, что молекулярные параметры бутадиенового каучука зависят от условий приготовления катализатора и проведения полимеризации - температуры, концентрации мономеров (Гармонов И.В. Синтетический каучук. 2-е изд., перераб. Л.: Химия, - 1983. - с.560).
На молекулярно-массовые характеристики бутадиенового каучука влияет соотношение компонентов каталитического комплекса. Количество катализатора определяет величину среднего молекулярного веса и характер молекулярно-массового распределения получаемого полимера. При значительном увеличении избытка триизобутилалюминия наблюдается снижение выхода полимера и его молекулярного веса. При низких дозировках катализатора образуются более высокомолекулярные полимеры с узким ММР (Кирпичников П.А., Аверко-Антонович Л.А., Аверко-Антонович Ю.О. Химия и технология синтетического каучука. Л.: Химия, - 1970. - с.528). Недостатком подобного процесса является невозможность регулирования молекулярно-массовых характеристик полимера по окончании процесса полимеризации.
Наиболее близким к заявляемому является способ получения бутадиеновых каучуков, основными стадиями которого являются полимеризация, стопперирование, ввод стабилизатора, усреднение полимеризата, дегазация полимеризата, выделение, сушка и упаковка каучука. В качестве растворителя используют толуол. Полимеризаты из разных батарей полимеризаторов смешиваются в специальной емкости, снабженной мешалкой и рубашкой для обогрева - усреднителе, затем усредненный полимеризат направляется на выделение каучука (Кирпичников П.А., Береснев В.В., Попова Л.М. Альбом технологических схем основных производств промышленности синтетического каучука. Л.: Химия, - 1976. - с.112). Недостатками подобного процесса являются невозможность регулирования молекулярно-массовых характеристик полимера и доведения их до требуемых по окончании процесса полимеризации.
Задачей предлагаемого изобретения является регулирование молекулярно-массовых характеристик полимера на стадии усреднения полимера после стадии полимеризации.
Поставленная задача достигается способом регулирования молекулярно-массовых характеристик бутадиеновых каучуков, полученных по способу, включающему стадии полимеризации, усреднения, дегазации и сушки, в котором регулируют молекулярно-массовые характеристики на стадии усреднения раствора полученного полимера путем добавления в него раствора полимера с предварительно привитыми иминоксильными группами, полученного промывкой при нагревании реакционного оборудования 0,001-20,0 мас.% раствором стабильного иминоксильного радикала общей формулы (R'NO):
где R1 - оксо-, окси-, оксим- группы, R2 - алкильная группа от 1 до 4 атомов углерода, при этом количество привитых иминоксильных групп составляет 0,5-30 мас.%, при этом соотношение исходного полимера в усреднителе и добавляемого полимера с привитыми иминоксильными группами составляет 1:(0,0003-0,3).
При сопоставлении существенных признаков изобретения с таковыми прототипа было выявлено, что они являются новыми и не описаны в прототипе, отсюда можно сделать вывод о соответствии заявляемого технического решения критерию «новизна».
Введение новых отличительных признаков в сочетании с достигаемым результатом указывает на изобретательский уровень предлагаемого изобретения.
Предлагаемое изобретение соответствует критерию «промышленная применимость», так как оно может быть использовано в промышленности, что подтверждается примерами конкретного осуществления изобретения.
Пример 1 состоит из двух опытов а) и б), проводимых параллельно.
Пример 1 осуществляют следующим образом:
Используют в опытах полимеризат, который получен полимеризацией бутадиена-1,3 известным способом (Кирпичников П.АВ., Береснев В.В., Попова Л.М. Альбом технологических схем основных производств промышленности синтетического каучука. Л.: Химия, - 1976) на литиевом или неодимовом катализаторе, с характеристиками, которые приведены в таблице.
Опыт а). Для получения раствора полимера с привитыми на него иминоксильными группами в растворителе проводят следующие операции: образец полимерных отложений, отобранных из реактора полимеризации производства бутадиенового каучука на литиевом катализаторе (СКД-L), взвешивают на аналитических весах с точностью до 0,0002 г, помещают в сетчатую ячейку, жестко прикрепленную к мешалке, погружают в колбу объемом 150 см 3. В колбу вносят 20% раствор стабильного иминоксильного радикала, где R1 - оксо-группа, R2 - алкильные группы с 1 атомом углерода Cl (2,2'6,6'-тетраметил-4-оксопиперидин-1-оксила) и димер стабильного иминоксильного радикала (2,2'6,6'-тетраметил-4-оксопиперидин-4-фульвена) в растворителе, включают перемешивание и нагревают до 90°C. После полного растворения полимерных отложений раствор полимера с привитыми на него иминоксильными группами в количестве 28% (на полимер) в растворителе вносят в количестве 0,03 г в 100 г полимеризата, выдерживая массовое соотношение полимеризат СКД-L: полимер с привитыми иминоксильными группами 1:0,0003, тщательно перемешивают и высаживают полимер из раствора. После дегазации и сушки определяют характеристики полученного бутадиенового каучука. Молекулярно-массовые характеристики полученного полимера - среднемассовая молекулярная масса (Mw), показатель полидисперсности (n) и показатель разветвленности представлены в таблице.
Опыт б). Проводят второй опыт аналогично опыту а), только в качестве полимерных отложений используют отложения, отобранные из реактора полимеризации производства бутадиенового каучука на неодимовом катализаторе (СКД-N), а в качестве полимера, у которого регулируют молекулярно-массовые характеристики, используют бутадиеновый каучук, полученный полимеризацией бутадиена на неодимовом катализаторе.
Примеры 2-12, проводят аналогично примеру 1, отличающиеся тем, что используют разные:
- концентрации стабильного иминоксильного радикала,
- заместители R1, R2 в общей формуле стабильного иминоксильного радикала,
- соотношения исходного полимера и добавляемого полимера с привитыми иминоксильными группами,
- количества привитых иминоксильных групп к полимеру.
Каждый из примеров 2-12 состоит из двух опытов а) и б), проводимых параллельно.
Количество привитых иминоксильных групп в полимере определяли методом электронного парамагнитного резонанса (ЭПР) и ИК-спектроскопии.
Предполагается, что в период взаимодействия макромолекулы полимера с иминоксильными группами R'NO в растворителе происходит обрыв цепи макромолекулы (R) с образованием полимеров с различными молекулярными массами с привитыми на них иминоксильными группами (RR'NO). После введения раствора полимера с привитыми иминоксильными группами в полимеризат (Pn) на стадии усреднения происходит реакция с образованием полимера с новыми молекулярными характеристиками (Pm ). Затем на стадии промывки от остатков каталитического комплекса полимеризат (Pm) освобождается от остатков непрореагировавших иминоксильных групп. Таким образом, осуществляется следующая реакция:
Добавление, согласно предлагаемому изобретению, к полимеризату на стадии усреднения в определенном соотношении раствора полимера с привитыми на него иминоксильными группами в определенном количестве имеет ряд преимуществ: позволяет получить полимер с новыми молекулярно-массовыми характеристиками по молекулярно-массовому распределению и длинноцепному ветвлению (разветвленности).
Раствор полимера с привитыми на него иминоксильными группами может быть получен в результате промывки технологического оборудования раствором стабильного иминоксильного радикала, что позволит удалить полимерные отложения за более короткий срок без вскрытия и демонтажа, тем самым повысить производительность, при этом позволит рационально утилизировать образовавшиеся отходы производства.
Показатели | Примеры | |||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
Содержание иминоксильных групп в растворителе, где R1 - оксогруппа, R2 - алкильная Cl группа, мас.% | 0,001 | - | 0,0005 | 0,01 | - | 0,005 | 0,1 | - | 0,05 | 20 | - | 10 |
Содержание димера в растворителе, мас.% | - | 0,001 | 0,0005 | - | 0,01 | 0,005 | - | - | 0,05 | - | - | 10 |
Содержание иминоксильных групп в растворителе, где R1 - оксимгруппа, R2 - алкильная C4 группа, мас.% | - | - | - | - | - | - | - | 0,1 | - | - | 20 | - |
Количество привитых иминоксильных групп, % | 0,5 | 0,55 | 0,6 | 0,9 | 0,99 | 1,1 | 4,5 | 4,9 | 5,3 | 28 | 29 | 29,8 |
Соотношение исходного полимера к добавляемому полимеру с привитыми иминоксильными группами | 1:0,3 | 1:0,27 | 1:0,28 | 1:0,09 | 1:0,08 | 1:0,08 | 1:0,0025 | 1:0,0024 | 1:0,0022 | 1:0,0003 | 1:0,00028 | 1:0,0003 |
Продолжение таблицы | ||||||||||||
Молекулярно-массовые характеристики бутадиеновых каучуков СКД-Л и СКД-Н: | Примеры | |||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
Среднемассовая молекулярная масса Mw·10-3 | | |||||||||||
СКД-Л, исх=258 | 267 | 265 | 263 | 262 | 254 | 252 | 248 | 247 | 243 | 220 | 218 | 217 |
СКД-Н, исх=467 | 493 | 490 | 474 | 468 | 467 | 465 | 410 | 406 | 400 | 366 | 341 | 296 |
Показатель полидисперсности: | | |||||||||||
СКД-Л, исх=2,06 | 2,02 | 2,02 | 2,02 | 2,01 | 2,01 | 2,01 | 2,00 | 2,00 | 1,99 | 1,97 | 1,97 | 1,97 |
СКД-Н, исх=3,47 | 3,34 | 3,34 | 3,34 | 3,33 | 3,33 | 3,32 | 3,1 | 3,1 | 3,1 | 3,0 | 2,98 | 2,95 |
Показатель разветвленноести: | | |||||||||||
СКД-Н, исх.=1,0 | 0,97 | 0,97 | 0,97 | 0,96 | 0,96 | 0,96 | 0,94 | 0,94 | 0,94 | 0,93 | 0,93 | 0,93 |