способ очистки низших алканов
Классы МПК: | C07C7/163 гидрированием C10G45/10 содержащими металлы группы платины или их соединения B01D53/72 органические соединения, не указанные в группах 53/48 |
Автор(ы): | Бусыгин Владимир Михайлович (RU), Гильманов Хамит Хамисович (RU), Мальцев Леонид Вениаминович (RU), Погребцов Валерий Павлович (RU), Сафин Дамир Хасанович (RU), Назмиева Илзия Фартовна (RU), Токинов Алексей Иванович (RU), Кутуев Леонид Хубулаевич (RU), Ильин Семен Григорьевич (RU) |
Патентообладатель(и): | Открытое акционерное общество "Нижнекамскнефтехим" (RU) |
Приоритеты: |
подача заявки:
2009-04-01 публикация патента:
27.10.2010 |
Изобретение относится к способу очистки низших алканов от метанола путем контакта сырья с катализатором, содержащим оксид алюминия при повышенных температуре и давлении, характеризующемуся тем, что в качестве катализатора используют алюмоплатиновый катализатор и контакт проводят при температуре 180-400°С, давлении 1,5-4,0 МПа, объемной скорости подачи сырья 0,4÷4 ч-1 , объемном соотношении сырье : водород =1:(5÷900). Применение настоящего способа позволяет повысить степень очистки низших алканов от метанола. 1 н.п. и 2 з.п. ф-лы.
Формула изобретения
1. Способ очистки низших алканов от метанола путем контакта сырья с катализатором, содержащим оксид алюминия при повышенных температуре и давлении, отличающийся тем, что в качестве катализатора используют алюмоплатиновый катализатор и контакт проводят при температуре 180-400°С, давлении 1,5-4,0 МПа, объемной скорости подачи сырья 0,4÷4 ч-1, объемном соотношении сырье:водород, 1:(5÷900).
2. Способ по п.1, отличающийся тем, что водород направляют на адсорбционную очистку от влаги и возвращают в рецикл.
3. Способ по пп.1 и 2, отличающийся тем, что часть очищенных низших алканов используют в качестве разбавителя очищаемых низших алканов.
Описание изобретения к патенту
Изобретение относится к способу очистки низших алканов от метанола и может быть использовано в нефтепереработке и нефтехимии, а именно при получении углеводородов, используемых в качестве растворителей в процессах полимеризации олефинов.
Известно использование адсорбентов для удаления примесей метанола и эфиров из углеводородных потоков, таких как олефины, природный газ и легкие углеводородные потоки. Для этих целей используют твердые пористые адсорбенты с развитой поверхностью, такие как цеолиты, оксид алюминия, силикагель, алюмосиликаты (патент РФ № 2264855, МПК7 B01J 20/18, опубл. 27.03.2003; патент РФ № 2288026, МПК7 B01D 53/72, опубл. 27.11.2005). Недостатками перечисленных адсорбентов являются низкая сорбционная емкость, высокая температура регенерации и низкая селективность по отношению к метанолу.
Известны способы очистки низших углеводородов от кислородсодержащих примесей, в которых использованы процессы каталитической очистки с применением катализаторов на основе алюмосиликатных цеолитов, а также медно-цинкалюминиевых и цинкалюминиевых катализаторов конверсии метанола (Каталитическая очистка углеводородных смесей от метанола. Г.С.Фалькевич, Л.М.Виленский, Е.Д.Ростанина и др. /М.: Мир нефтепродуктов, 2007, № 5, с.30-32). Эффективность работы указанных катализаторов, в основном, определяется содержанием метанола в алкане и условиями проведения процесса (температура и давление). Однако недостатками этих способов является то, что указанные катализаторы характеризуются низкой эффективностью очистки от метанола и имеют ограниченное применение для тяжелых потоков из-за превращения углеводородов и быстрой дезактивации катализаторов.
Наиболее близким по технической сущности является способ очистки углеводородных смесей от метанола (Патент РФ № 2293056, МПК С01В 3/22, С07С 1/20, опубл. 10.02.2007), включающий контакт метанолсодержащего углеводорода с цинк-хромовым или медно-цинк-хромовым катализатором или катализатором на основе цеолитов группы пентасилов. Контакт осуществляют при объемной скорости подачи сырья 3-15 ч-1 при температуре 220-400°С и давлении до 1,8 МПа. При использовании катализатора конверсии метанола в углеводороды, содержащего 70% цеолита HZSM-5 и 30% Аl2О3, температура реакции составляет 400-450°С. При этом содержание метанола в сырье - 1,5-5 мас.%, в очищенном продукте 0,01-0,05 мас.%.
Недостатком данного способа является высокое остаточное содержание примеси метанола в углеводородных потоках.
Задачей данного изобретения является повышение степени очистки низших алканов от метанола.
Для решения поставленной задачи предлагается способ очистки низших алканов от метанола путем контакта сырья с катализатором, содержащим оксид алюминия при повышенных температуре и давлении, при этом в качестве катализатора используют алюмоплатиновый катализатор и контакт проводят при температуре 180-400°С, давлении 1,5-4,0 МПа, объемной скорости подачи сырья 0,4÷4 ч-1 , объемном соотношении сырье: водород =1:(5÷900).
Водород может быть направлен на адсорбционную очистку от влаги и возвращен в рецикл.
Часть очищенных низших алканов может быть использована в качестве разбавителя очищаемых низших алканов.
В качестве алюмоплатинового катализатора могут быть использованы известные, промышленно выпускаемые катализаторы АП-56, ИП-62, АП-64, СИ-2, ИП-82 и другие катализаторы, содержащие платину и окись алюминия.
В качестве низших алканов могут быть использованы фракции этана, пропана, бутана, изобутана, пентана, изопентана и гексана и другие.
Для способа очистки низших алканов от метанола новым является использование контакта углеводородов с алюмоплатиновым катализатором в присутствии избытка водорода, что подтверждает соответствие критериям патентоспособности «новизна» и «изобретательский уровень». Возможность применения этого способа в промышленном процессе очистки углеводородных фракций подтверждает соответствие критерию «промышленная применимость».
Способ очистки низших алканов от метанола проводят путем контактирования очищаемых углеводородных фракций низших алканов при температуре 180-400°С, давлении 1,5-4,0 МПа, объмной скорости подачи сырья 0,4-4 ч-1 объемном соотношении сырье: водород =1:(5÷900). Предусмотрена возможность использования очищенного продукта (рецикла) для разбавления сырья в массовом соотношении сырье: рецикл =1:(0,5÷4) и рецикла водородсодержащего газа в свежий водород в объемном соотношении (10÷350):1 соответственно.
При заявляемых условиях достигается очистка фракций низших алканов до содержания метанола не более 5 ррм об., что соответствует требованиям процессов полимеризации.
Осуществление способа иллюстрируется следующими примерами.
Пример 1. Очистку проводят в реакторе с неподвижным слоем катализатора. В качестве сырья используют пропановую фракцию, содержащую 3000 ррм об. метанола, подаваемую с объемной скоростью 0,4 ч-1, давлении - 1,8 МПа. Сырье поступает в смеситель, где его смешивают с осушенным водородом в объемном соотношении 1:100 соответственно и направляют на контакт с катализатором в реактор. Процесс проводят при температуре 280°С на алюмоплатиновом катализаторе марки ИП-62М (ТУ 38.10173-88). Продукты реакции с нижней части реактора направляют на выделение очищенного от метанола пропана. Продукты реакции анализируют на углеводородный состав газохроматографическим методом. Анализ очищенного пропана показывает отсутствие примеси метанола.
Пример 2. Очистку проводят в условиях примера 1, но при содержании в пропановой фракции 16600 ррм об. метанола. Сырье поступает в смеситель, где его смешивают с осушенным водородом в объемном соотношении 1:200 соответственно и направляют на контакт с катализатором в реактор. В очищенном пропане содержание примеси метанола составляет 1,2 ррм об.
Пример 3. Очистку проводят в условиях примера 2. В качестве водорода используют смесь свежего осушенного водорода и рециклового водорода, осушенного и очищенного на сорбенте NaA от кислородсодержащих примесей, взятых в объемном соотношении 1:220 соответственно. В качестве катализатора используют ИП-82 (ТУ 21-149-04610600-99). В очищенном пропане содержание примеси метанола составляет 1,0 ррм об.
Пример 4. Очистку проводят в условиях примера 3, но в пропановую фракцию, содержащую 33300 ррм об. метанола, добавляют рецикловый пропан в массовом соотношении 1:2,2 соответственно. В очищенном пропане содержание примеси метанола составляет 1,6 ррм об.
Пример 5. Очистку проводят в условиях примера 4, но процесс проводят при температуре 340°С, давлении 3,0 МПа, с объемной скоростью 1,0 ч-1. В качестве водорода используют смесь свежего осушенного водорода и рециклового водорода, осушенного и очищенного на сорбенте NaA от кислородсодержащих примесей, взятых в объемном соотношении 1:300. Объемное соотношение сырье: водород - 1:400. В очищенном пропане содержание примеси метанола - 1 ррм об.
Пример 6. Очистку проводят в условиях примера 5, но в качестве сырья используют бутан-бутиленовую фракцию, содержащую 25,0 мас.% бутилена, с содержанием метанола - 53,6 ррм об. В очищенном продукте содержание метанола 1 ррм об. Содержание бутилена в очищенном бутане 5% мас.
Пример 7. Очистку проводят в условиях примера 5, но в качестве сырья используют гексановую фракцию с содержанием метанола 890 ррм об. Очистку проводят на катализаторе П-64 (ТУ 2177-011-04749189-95). В очищенном продукте содержание метанола 1 ррм об.
Пример 8. Очистку проводят в условиях примера 5, но в качестве сырья используют пентановую фракцию с содержанием метанола 12000 ррм об. Очистку проводят на катализаторе АП-56 (ТУ 2177-011-04749189-95). В очищенном продукте содержание метанола 1,2 ррм об.
Пример 9. Очистку проводят в условиях примера 5, но в качестве сырья используют изопентановую фракцию с содержанием метанола 2000 ррм об. Очистку проводят на катализаторе СИ-2 (ТУ 2177-009-04706192-00). В очищенном продукте содержание метанола 2 ррм об.
Как видно из представленных примеров, заявляемый способ позволяет очищать углеводороды от метанола до полимеризационной чистоты (не более 5 ррм об.). Кроме того, предлагаемый способ позволяет очистить алканы не только от метанола, но и от непредельных углеводородов, содержащихся в очищаемых углеводородах.
Класс C10G45/10 содержащими металлы группы платины или их соединения
Класс B01D53/72 органические соединения, не указанные в группах 53/48