способ электрохимической переработки металлических отходов жаропрочных никелевых сплавов, содержащих рений

Классы МПК:C22B23/00 Получение никеля или кобальта
C22B61/00 Получение металлов, не отнесенных к предыдущим группам этого подкласса
C22B7/00 Переработка сырья, кроме руды, например скрапа, с целью получения цветных металлов или их соединений
C25C1/08 никеля или кобальта
C25C1/22 металлов, не отнесенных к рубрикам  1/02
Автор(ы):, , , ,
Патентообладатель(и):Учреждение Российской академии наук Институт металлургии и материаловедения им. А.А. Байкова РАН (ИМЕТ РАН) (RU)
Приоритеты:
подача заявки:
2009-04-09
публикация патента:

Изобретение относится к способу электрохимической переработки металлических отходов жаропрочных никелевых сплавов, содержащих рений. Способ включает анодное растворение отходов сплавов в кислом электролите при наложении переменного электрического тока. Растворение ведут в азотнокислом или сернокислом электролите при наложении однополупериодного асимметричного переменного электрического тока промышленной частоты и при использовании в качестве второго электрода пластины из тантала или ниобия. При этом анодное растворение ведут при поддержании кислотности азотнокислого электролита на уровне 200-250 г/л НNО3, а сернокислого электролита на уровне 150-200 г/л H2SO4, при температуре 20-40°С и силе тока не менее 1 кА. Техническим результатом является повышение скорости процесса с обеспечением экологической чистоты. 2 з.п. ф-лы, 3 табл.

Формула изобретения

1. Способ электрохимической переработки металлических отходов жаропрочных никелевых сплавов, содержащих рений, включающий анодное растворение в кислом электролите при наложении переменного электрического тока, отличающийся тем, что растворение ведут в азотнокислом или сернокислом электролите при наложении однополупериодного асимметричного переменного электрического тока промышленной частоты при использовании в качестве второго электрода пластины из тантала или ниобия.

2. Способ по п.1, отличающийся тем, что анодное растворение ведут при поддержании кислотности азотнокислого электролита на уровне 200-250 г/л НNО3, при температуре 20-40°С и силе тока не менее 1 кА.

3. Способ по п.1, отличающийся тем, что анодное растворение ведут при поддержании кислотности сернокислого электролита на уровне 150-200 г/л H2SO 4, при температуре 20-40°С и силе тока не менее 1 кА.

Описание изобретения к патенту

Изобретение относится к регенерации вторичного металлического сырья, в частности к переработке металлических отходов жаропрочных никелевых сплавов, содержащих рений.

После распада СССР Россия осталась без освоенных и надежных сырьевых источников рения, широко используемого в ряде современных областях техники (авиация, космос, нефтехимия и др.). В связи с этим, промышленное производство этого редкого и рассеянного элемента в РФ практически прекратилось. В сложившейся ситуации резко возросла актуальность извлечения рения из различных видов вторичного сырья, содержащего данный металл. Одним из наиболее массовым типом подобных материалов являются металлические отходы многокомпонентных авиационных жаропрочных никелевых сплавов марки ЖС-32. Их средний химический состав следующий (в %): Ni~60; Со, W 5-10; Re, Та 2,0-4,0; Мо, Cr, Al 0,5-5,0.

В производственной практике отходы никель-кобальтовых сплавов обычно подшихтовывают при пирометаллургической переработке рудного и вторичного никелевого сырья [Худяков И.Ф., Тихонов А.И. и др. Металлургия меди, никеля и кобальта. М.: Металлургия, 1976 г., 230 с.]. В этом случае рений и другие ценные компоненты (вольфрам, тантал, ниобий, молибден) теряются с общей массой расплава и не возвращаются в производство.

Другой путь заключается в растворении отходов жаропрочного никелевого сплава марки ЖС-32 в растворах сильных минеральных кислот (азотная или ее смеси с серной или соляной кислотами) [Истрашкина М.В., Передереева З.А., Фомин С.С. Перспективные технологии извлечения рения из отходов никелевых сплавов. В юбилейном сборнике «Гиредмета», М.: ЦИНАО, 2001, с.111-119] - аналог.

Согласно данному методу в оптимальном режиме рений на ~95% переходит в кислый раствор, из которого его затем извлекают известными способами (например, сорбцией на анионообменных смолах). Основные недостатки аналога следующие:

1. Кинетические затруднения, определяющие высокую продолжительность выщелачивания (до 8-10 часов и более на операцию).

2. Необходимость предварительного измельчения отходов.

3. Экологические ограничения, связанные с интенсивным выделением экологически вредных нитрозных газов.

Наиболее близким техническим решением является способ выделения ценных металлов из суперсплавов (патент RU 2313589 от 2002.11.13). Согласно данному способу окисление (растворение) данного сплава проводят в растворах минеральных кислот при наложении переменного тока, а в качестве электродов (растворимых) непосредственно применяют перерабатываемые отходы. Недостатком данного метода является относительно невысокая скорость окисления (растворения) отходов даже при достаточно высоком выходе по току (~90%).

Задача, на решение которой направлено настоящее изобретение, заключается в создании способа электрохимической переработки жаропрочных никелевых сплавов, содержащих рений, при наложении однополупериодного переменного тока промышленной частоты для интенсификации процесса.

Техническим результатом изобретения является повышение скорости процесса окисления металлических отходов жаропрочного никелевого сплава, содержащего рений, с обеспечением экологической чистоты.

Данный технический результат достигается тем, что в способе электрохимической переработки металлических отходов жаропрочных никелевых сплавов, содержащих рений, включающем анодное растворение сплава в кислых электролитах при наложении переменного электрического тока, согласно изобретению растворение ведут в азотнокислом или серном электролите при наложении однополупериодного асимметричного переменного электрического тока промышленной частоты при использовании в качестве второго электрода пластины из тантала или ниобия. При этом анодное растворение ведут при поддержании кислотности азотнокислого электролита на уровне 200-250 г/л HNO3 и сернокислого электролита на уровне 150-200 г/л H2SO4, температуре 20-40°С и силе тока не менее 1 кА.

Сущность изобретения заключается в том, что окисление (растворение) жаропрочного никелевого сплава, содержащего рений, осуществляют в азотно- или сернокислом электролите при наложении однополупериодного асимметричного переменного тока промышленной частоты, который достигается тем, что в качестве 2-го электрода используют пластины из Та или Nb, что связано с полупроводниковыми свойствами оксидов тантала и ниобия (подробнее в книге «Институту ИМЕТ РАН 70 лет», М.: Контакт, 2008, с.189-203).

Как видно из табл.1 процесс кислотного разложения никелевого сплава значительно ускоряется при анодном растворении отходов в данных условиях. При этом, скорость электрохимического окисления сплава примерно в 1,5 раза превышает теоретическое значение, рассчитанное из соответствующего электрохимического эквивалента. Это свидетельствует об активации химического процесса окисления сплава за счет применения вышеописанного режима.

Таблица 1

Электрохимическое окисление (растворение) жаропрочного никелевого сплава марки ЖС-32 в растворах минеральных кислот
Минеральная кислота, кислотность Режим окисления (растворения) сплава Скорость растворения сплава, г/час·см2
HNO3, 250 г/лСимметричный синусоидальный переменный ток промышленной частоты, рабочая сила тока 2 А, площадь растворяемого образца 16,5 см2, температура ~30°С. 0,012
HNO 3, 250 г/л Асимметричный однополупериодный переменный ток промышленной частоты, сила тока 2 А, площадь растворяемого образца 16,5 см2 , температура ~30°С. 0,050
H 2SO4, 200 г/л Симметричный синусоидальный переменный ток промышленной частоты, сила тока 1 А, площадь растворяемого образца 49 см2 , температура ~25°С 0,010
H 2SO4, 200 г/л Асимметричный однополупериодный переменный ток промышленной частоты, сила тока 1 А, площадь растворяемого образца 49 см2 , температура ~25°С 0,056

С физико-химической точки зрения растворение данного сплава в растворах сильных минеральных кислот при наложении электрического тока можно рассматривать как суммирование двух примерно равнозначных процессов:

- анодное электрохимическое окисление (растворение) сплава;

- чисто химическое окисление (растворение) сплава.

При этом наложение однополупериодного переменного электрического тока существенно активирует процесс химического окисления, в результате чего и достигаются такие повышенные показатели по скорости растворения сплава.

Следует подчеркнуть, что хотя концентрация азотной кислоты и не оказывает существенного влияния на скорость окисления сплава, при росте кислотности азотнокислого электролита >250 г/л HNO3 и температуры >50°С происходит резкое повышение выделения вредных нитрозных газов. Поэтому, увеличение температуры электрохимического передела выше 50°С не желательно.

Следовательно, оптимальные параметры электрохимической переработки металлических отходов жаропрочных никелевых сплавов в азотно- и сернокислом электролитах следующие:

- температура 20-40°С;

- кислотность электролита 200-250 г/л HNO3 или 150-200 г/л H2SO4;

- сила тока 1 кА и выше;

- электрический режим - однополупериодный переменный ток промышленной частоты, материал второго электрода - тантал или ниобий.

Данный режим обеспечивает максимальные показатели по скорости растворения сплава, которая составляет до 2 кг/час при силе тока >1 кА и минимизацию вредных газовыделений.

При электрохимической переработке отходов жаропрочного никелевого сплава происходит разделение компонентов сплава по различным фазам уже на первом этапе электрохимического передела. Так, в анодный кек (осадок) выпадают оксиды вольфрама, молибдена, тантала и ниобия, а в кислом электролите накапливаются основные цветные металлы (никель, кобальт, алюминий и хром). Распределение рения зависит от типа электролита. В азотнокислом варианте рений, в основном, переходит в кислый электролит (~ на 95%). В случае сернокислого электролита - рений на 70% накапливается в анодном шламе, а на 30% концентрируется в насыщенном электролите.

Из насыщенного электролита и анодного шлама рений и другие ценные компоненты извлекаются известными методами выщелачивания, осаждения, ионообменной сорбции или жидкостной экстракции.

Балансное распределение металлов при электрохимическом окислении (растворении) металлических отходов жаропрочного никелевого сплава в серно- и азотнокислом электролитах показано в табл.2 и 3.

Таблица 2

Балансное распределение металлов при электрохимическом окислении (растворении) жаропрочного никелевого сплава марки ЖС-32 в сернокислом электролите в оптимальном режиме, %
Продукт переработки Re WMo ТаNb NiCo AlCr
Насыщенный электролит + промводы27,0 1,0 20,00,5 1,086,5 87,5102 40,0
Кек (анодный шлам)70,0 94,0 75,095,5 95,013,0 9,02,0 55,0
Итого 97,0 95,095,0 96,096,0 99,596,5 10495,0
Дебаланс 3,05,0 5,04,0 4,00,5 3,5+4,0 5,0

Таблица 3

Балансное распределение металлов при электрохимическом окислении (растворении) жаропрочного никелевого сплава марки ЖС-32 в азотнокислом электролите в оптимальном режиме, %
Продукт переработки Re WMo ТаNb NiCo AlCr
Насыщенный электролит + промводы94,9 1,0 10,0- 0,595,0 94,699,5 90,0
Кек (анодный шлам)1,9 90,0 83,0103 96,00,5 4,01,0 2,0
Итого 96,8 91,093,0 10396,5 95,598,6 100,592,0
Дебаланс 3,29,0 7,0+3,0 3,54,5 1,4+0,5 8,0

Пример 1.

На переработку поступают металлические отходы жаропрочного никелевого сплава марки ЖС-32, представляющие собой фрагменты и обломки лопаток газовых турбин геометрических габаритов: длина 2-7,5 см, ширина до 4,5 см. Химический состав отходов следующий (в %): Со 7,0; W 8,5; Мо 1,15; Re 3,6; Si 0,75; Та 3,2; Nb 1,35; Cr 4,75; Al 5,15; С 0,15, остальное - никель.

Отходы подвергали электрохимическому окислению (растворению) под действием симметричного синусоидального переменного тока промышленной частоты. Режим процесса: температура 40°С, раствор 200 г/л H2SO4, плотность по току 0,1 А/см2, продолжительность 1 час. В данном режиме скорость окисления (растворения) сплава составила 0,450 г/час. Выход по току - 90%.

Аналогичные результаты были получены и при использовании раствора HNO3 (250 г/л).

Пример 2.

На переработку поступают металлические отходы жаропрочного никелевого сплава марки ЖС-32, представляющие собой фрагменты и обломки лопаток газовых турбин геометрических габаритов: длина 2-7,5 см, ширина до 4,5 см. Химический состав отходов следующий (в %): Со 7,0; W 8,5; Мо 1,15; Re 3,6; Si 0,75; Та 3,2; Nb 1,35; Cr 4,75; Al 5,15; С 0,15, остальное - никель.

Окисление (растворение) сплава осуществляли при наложении однополупериодного асимметричного переменного тока промышленной частоты в накопительном режиме. Для этого в качестве 2-го электрода в данном случае использовали пластину из Та (25×10 мм).

Условия электрохимического анодного растворения сплава: кислотность сернокислого электролита ~200 г/л H2 SO4, плотность по току ~0,1 А/см2, температура 40°С, продолжительность электрохимического выщелачивания 100 часов. Всего в данном режиме было растворено 177,5 г сплава ЖС-32, то есть скорость растворения сплава составила ~1,8 г/час. Таким образом скорость окисления (растворения) сплава возросла ~ в 4 раза.

Пример 3.

На переработку поступают металлические отходы жаропрочного никелевого сплава марки ЖС-32, представляющие собой фрагменты и обломки лопаток газовых турбин геометрических габаритов: длина 2-7,5 см, ширина до 4,5 см. Химический состав отходов следующий (в %): Со 7,0; W 8,5; Мо 1,15; Re 3,6; Si 0,75; Та 3,2; Nb 1,35; Cr 4,75; Al 5,15; С 0,15, остальное - никель.

Анодное окисление (растворение) сплава осуществляют в растворе 250 г/л HNO 3. Режим процесса: плотность по току 0,1 А/см2 , температура 30°С, продолжительность электрохимического выщелачивания составила 72 часа. Всего в данном режиме было растворено 130 г сплава ЖС-32, то есть скорость растворения составила 1,8 г/час, что сопоставимо с показателями процесса при использовании сернокислого электролита (пример 2).

Приведенные примеры подтверждают достижение позитивного эффекта применения однополупериодного режима для интенсификации процесса электрохимического окисления (растворения) металлических отходов жаропрочного никелевого сплава, содержащего рений.

К преимуществам предлагаемого технического решения по сравнению с базовым объектом относятся:

1. Высокая скорость растворения отходов, обусловленная активирующим влиянием однополупериодного переменного тока в данных условиях.

2. Возможность переработки отходов без их предварительного измельчения.

3. Комплексность технологии с извлечением практически всех ценных компонентов (Ni, Со, Та, Nb, W, Re).

4. Экологическая чистота, связанная с минимизацией вредных газовыделений за счет оптимизации технологического режима.

Класс C22B23/00 Получение никеля или кобальта

способ разделения платины (ii, iv), родия (iii) и никеля (ii) в хлоридных растворах -  патент 2527830 (10.09.2014)
способ получения суперпарамагнитных частиц никеля и суперпарамагнитная порошковая композиция -  патент 2514258 (27.04.2014)
сорбционное извлечение ионов кобальта из кислых хлоридных растворов -  патент 2514242 (27.04.2014)
способ извлечения никеля и кадмия из отработанных щелочных аккумуляторов и батарей -  патент 2506328 (10.02.2014)
способ переработки окисленных руд с получением штейна -  патент 2504590 (20.01.2014)
способ извлечения никеля -  патент 2503731 (10.01.2014)
способ переработки окисленных никелевых руд -  патент 2502811 (27.12.2013)
способ извлечения никеля и кобальта из отвальных конверторных шлаков комбинатов, производящих никель -  патент 2499064 (20.11.2013)
способ переработки никельсодержащих сульфидных материалов -  патент 2495944 (20.10.2013)
способ разделения медно-никелевого файнштейна -  патент 2495145 (10.10.2013)

Класс C22B61/00 Получение металлов, не отнесенных к предыдущим группам этого подкласса

способ извлечения рения и платиновых металлов из отработанных катализаторов на носителях из оксида алюминия -  патент 2525022 (10.08.2014)
способ извлечения рения из урансодержащих растворов -  патент 2523892 (27.07.2014)
способ извлечения рения из кислых растворов -  патент 2519209 (10.06.2014)
способ получения металлического рения путем восстановления перрената аммония -  патент 2511549 (10.04.2014)
способ переработки отработанных платинорениевых катализаторов -  патент 2493276 (20.09.2013)
способ разделения сульфидов платины и рения -  патент 2490349 (20.08.2013)
способ переработки дезактивированных катализаторов на носителях из оксида алюминия, содержащих металлы платиновой группы и рений -  патент 2490342 (20.08.2013)
способ электрохимической переработки отходов жаропрочных никелевых сплавов, содержащих рений, вольфрам, тантал и другие ценные металлы -  патент 2484159 (10.06.2013)
извлечение рения -  патент 2478721 (10.04.2013)
нанотехнологический способ извлечения рения из пород и руд черносланцевых формаций и продуктов их переработки -  патент 2455237 (10.07.2012)

Класс C22B7/00 Переработка сырья, кроме руды, например скрапа, с целью получения цветных металлов или их соединений

отражательная печь для переплава алюминиевого лома -  патент 2529348 (27.09.2014)
способ извлечения молибдена из техногенных минеральных образований -  патент 2529142 (27.09.2014)
способ комплексной переработки красных шламов -  патент 2528918 (20.09.2014)
способ переработки медно-ванадиевых отходов процесса очистки тетрахлорида титана -  патент 2528610 (20.09.2014)
способ извлечения металлов из потока, обогащенного углеводородами и углеродистыми остатками -  патент 2528290 (10.09.2014)
способ извлечения рения и платиновых металлов из отработанных катализаторов на носителях из оксида алюминия -  патент 2525022 (10.08.2014)
способ переработки твердых бытовых и промышленных отходов и установка для его осуществления -  патент 2523202 (20.07.2014)
способ переработки титановых шлаков -  патент 2522876 (20.07.2014)
способ утилизации твердых ртутьсодержащих отходов и устройство для его осуществления -  патент 2522676 (20.07.2014)
двух ванная отражательная печь с копильником для переплава алюминиевого лома -  патент 2522283 (10.07.2014)

Класс C25C1/08 никеля или кобальта

способ получения ультрамикродисперсного порошка оксида никеля на переменном токе -  патент 2503748 (10.01.2014)
способ электрохимической переработки отходов жаропрочных никелевых сплавов, содержащих рений, вольфрам, тантал и другие ценные металлы -  патент 2484159 (10.06.2013)
способ утилизации отработанного раствора химического никелирования -  патент 2481421 (10.05.2013)
способ электроизвлечения компактного никеля -  патент 2361967 (20.07.2009)
анодная ячейка для электровыделения цветных металлов -  патент 2353712 (27.04.2009)
способ получения электролитного никеля -  патент 2303086 (20.07.2007)
способ восполнения дефицита никеля в процессе электролитического рафинирования никеля -  патент 2273683 (10.04.2006)
способ изготовления диафрагменного элемента ячейки для электролитического извлечения металлов из водных растворов и диафрагменный элемент -  патент 2256729 (20.07.2005)
способ электролитического получения никеля -  патент 2247796 (10.03.2005)
способ компенсации дефицита никеля при электролитическом рафинировании -  патент 2243294 (27.12.2004)

Класс C25C1/22 металлов, не отнесенных к рубрикам  1/02

Наверх