стенд для моделирования импульсного газотермодинамического воздействия высокотемпературного газа на элементы тепловой защиты конструкции

Классы МПК:F02K9/96 отличающиеся специальными устройствами для испытания или проверки и измерений
G01M15/00 Испытание машин и двигателей
Автор(ы):, , , , , , , , ,
Патентообладатель(и):Федеральное государственное унитарное предприятие "Московский институт теплотехники" (RU)
Приоритеты:
подача заявки:
2009-07-09
публикация патента:

Стенд содержит состыкованные между собой твердотопливный газогенератор и газоход переменного сечения. Газоход включает переходный участок с нормированным профилем, мерный участок постоянного сечения с исследуемым материалом и установленными в нем термопарами и сопловой блок для выпуска газов в окружающую среду. Сопловой блок выполнен в виде стакана с боковыми симметрично расположенными выпускными окнами. В дне стакана осесимметрично установлена трубка Пито-Прандтля с датчиком полного давления, срез которой находится в перпендикулярной плоскости, проходящей через ось отверстия в стенке мерного газохода с датчиком статического давления, расположенного за исследуемым материалом. Термопара установлена на дне стакана. Между газогенератором и газоходом переменного сечения установлена форкамера с термостойкой диафрагмой с перфорацией, разделяющей форкамеру и газоход переменного сечения. Площадь перфорации диафрагмы, отношение площади выпускных окон к площади сечения мерного газохода, расстояние от среза сопла газогенератора до диафрагмы, длина переходного участка газохода и диаметр форкамеры определяются соотношениями, защищаемыми настоящим изобретением. Изобретение позволяет получить при испытаниях достоверные результаты об уносе и прококсовке теплозащитных материалов. 1 ил. стенд для моделирования импульсного газотермодинамического воздействия   высокотемпературного газа на элементы тепловой защиты конструкции, патент № 2399783

стенд для моделирования импульсного газотермодинамического воздействия   высокотемпературного газа на элементы тепловой защиты конструкции, патент № 2399783

Формула изобретения

Стенд для моделирования импульсного газотермодинамического воздействия высокотемпературного газа на элементы тепловой защиты конструкции, содержащий состыкованные между собой твердотопливный газогенератор и газоход переменного сечения, включающий переходный участок с нормированным профилем, мерный участок постоянного сечения с исследуемым материалом и установленными в нем термопарами, сопловой блок для выпуска газов в окружающую среду, отличающийся тем, что сопловой блок выполнен в виде стакана с боковыми симметрично расположенными выпускными окнами, в дне стакана осесимметрично установлена трубка Пито-Прандтля с датчиком полного давления, срез которой находится в перпендикулярной плоскости, проходящей через ось отверстия в стенке мерного газохода с датчиком статического давления, расположенного за исследуемым материалом, а термопара установлена на дне стакана, между газогенератором и газоходом переменного сечения установлена форкамера с термостойкой диафрагмой с перфорацией, разделяющей форкамеру и газоход переменного сечения

Fперф=(0,3÷0,4)Fф и стенд для моделирования импульсного газотермодинамического воздействия   высокотемпературного газа на элементы тепловой защиты конструкции, патент № 2399783 ,

где Fперф - площадь перфорации диафрагмы; Fф - площадь сечения форкамеры; Fок - площадь выпускных окон; Fм - площадь сечения мерного газохода, а расстояние от среза сопла газогенератора до диафрагмы l д=(1,5÷2)dм, длина переходного участка газохода lпер=(2,5÷3)dм, диаметр форкамеры dф=(1,7÷2)dм, где dм - диаметр мерного участка газохода.

Описание изобретения к патенту

Изобретение относится к области моделирования натурных условий работы элементов конструкции механизмов, характеризующихся кратковременностью (0,5÷1,0 с) газотермодинамического высокотемпературного (~2000 К) воздействия при скорости газового обтекания 250÷600 м/с и давлении 5÷20 ата.

Известна модельная установка для испытания материалов тепловой защиты [1], содержащая корпус с размещенным в нем твердотопливным зарядом торцевого горения - источником высокотемпературного газа. Корпус имеет газоход с сужающимся переходным участком, переходящим в мерный участок цилиндрической формы с размещенным в нем исследуемым материалом, в котором встроены термопары для измерения температуры в материале. Мерный участок переходит в сопло с центральным отверстием для выпуска газа.

Недостаток данной модельной установки состоит в том, что она не обеспечивает исследование уноса и прококсовки термостойких материалов для разных давлений и скоростей обтекания образцов газовым высокотемпературным потоком в заданное время воздействия.

Целью изобретения является получение достоверных сведений о термостойкости испытываемых материалов при кратковременном (0,5÷1,0 с) газодинамическом воздействии высокотемпературного потока на испытываемые образцы.

Указанная цель достигается тем, что в модельной установке, содержащей состыкованные между собой твердотопливный газогенератор и газоход переменного сечения, включающий переходный участок с нормированным профилем, мерный участок постоянного сечения с исследуемым материалом и установленными в нем термопарами, сопловой блок для выпуска газов в окружающую среду, сопловой блок выполнен в виде стакана с боковыми симметрично расположенными выпускными окнами, в дне стакана осесимметрично установлена трубка Пито-Прандтля с датчиком полного давления, срез которой находится в перпендикулярной плоскости, проходящей через ось отверстия в стенке мерного газохода с датчиком статического давления, расположенного за исследуемым материалом, а термопара установлена на дне стакана, между газогенератором и газоходом переменного сечения установлена форкамера с термостойкой диафрагмой с перфорацией, разделяющей форкамеру и газоход переменного сечения,

Fперф=0,3÷0,4Fф и стенд для моделирования импульсного газотермодинамического воздействия   высокотемпературного газа на элементы тепловой защиты конструкции, патент № 2399783

где Fперф - площадь перфорации диафрагмы, Fф - площадь сечения форкамеры, Fок - площадь выпускных окон, Fм - площадь сечения мерного газохода, а расстояние от среза сопла газогенератора до диафрагмы lд=1,5÷2dм, длина переходного участка газохода lпер=2,5÷3dм, диаметр форкамеры dф=1,7÷2dм, где dм - диаметр мерного участка газохода.

Конструкция предложенного стенда изображена на чертеже.

Стенд содержит газогенератор 1 с соплом 2, форкамеру 3, перфорированную диафрагму 4, переходный участок 5, мерный участок 6 с исследуемыми элементами 7 и датчиком замера давления 8, сопловой блок 9 с выпускными окнами 10, с датчиком замера температуры потока (термопарой) 11 и трубкой Пито 12 с датчиком давления 13 для замера полного давления газового потока.

Для оценки уноса материала образца в зависимости от скорости газового потока и давления важно в мерном газоходе по его сечению обеспечить равномерный поток.

Это достигается за счет установки термостойкой диафрагмы между переходным участком газохода и срезом сопла газогенератора.

Площадь перфорации Fперф диафрагмы составляет F перф=0,3÷0,4Fф (где Fф - площадь сечения форкамеры).

Соотношения: расстояние l д (от среза сопла газогенератора до диафрагмы) lд =1,5÷2dм, где dм - диаметр мерного участка газохода, длина переходного участка газохода lпер =2,5÷3dм, диаметр форкамеры dф=1,7÷2d м, получены экспериментально с учетом рекомендаций, приведенных в литературе [2, 3, 4].

Диаметр мерного газохода dм определяется в зависимости от ожидаемого среднего давления Рм в мерном газоходе (в диапазоне Рм =5÷20 ата) и фактического давления в газогенераторе (Р гг=150÷200 ата).

Например, для соотношения стенд для моделирования импульсного газотермодинамического воздействия   высокотемпературного газа на элементы тепловой защиты конструкции, патент № 2399783 при диапазоне отношений стенд для моделирования импульсного газотермодинамического воздействия   высокотемпературного газа на элементы тепловой защиты конструкции, патент № 2399783 (в исследовании). При этом соотношение площади выпускных окон Fок соплового блока к площади сечения мерного газохода Fм находится в диапазоне стенд для моделирования импульсного газотермодинамического воздействия   высокотемпературного газа на элементы тепловой защиты конструкции, патент № 2399783 Тогда замеренное давление у стенки мерного газохода позади образца испытываемого материала (статическое давление Рм и полное давление Р, замеренное в трубке Пито, срез который находится в одном сечении с датчиком замера давления у стенки газохода) с учетом замера температуры газа Т на дне стакана-сопла позволяет по известным газодинамическим формулам получить скорость газового потока

(V м=стенд для моделирования импульсного газотермодинамического воздействия   высокотемпературного газа на элементы тепловой защиты конструкции, патент № 2399783 м·акр,

где стенд для моделирования импульсного газотермодинамического воздействия   высокотемпературного газа на элементы тепловой защиты конструкции, патент № 2399783 акр=f(Т0)).

Стенд работает следующим образом. При задействовании газогенератора с определенными расходными характеристиками и при определенном давлении в камере поток газа из сопла устремляется к перфорированной диафрагме, обеспечивающей дозвуковое истечение газового потока, его выравнивание и ускорение происходит в переходном участке. К мерному участку газ поступает с равномерной скоростью по сечению газохода, что создает необходимые условия для корректного замера статического и полного давлений, а в сочетании с замером температуры заторможенного газа у дна стакана полученные данные позволяют с достаточной точностью определить скорость потока газов. Изменением площади выпускных окон достигается заданное давление в мерном газоходе.

Стенд предложенной конструкции позволяет получить достоверные результаты об уносе и прококсовке теплозащитных материалов. Стенд прошел испытания. В дальнейшем результаты проводимых экспериментов планируется использовать в проектных разработках.

Источники информации

1. Шишков А.А., Панин С.Д., Румянцев Б.В. Рабочие процессы в ракетных двигателях твердого топлива. Справочник. М.: Машиностроение, 1989, с.240, рис.5.4.2.

2. Идельчик И.Е. Справочник по гидравлическому сопротивлению фасонных и прямых частей трубопроводов. ЦАГИ, 1950 г., с.215.

3. Идельчик И.Е. Аэрогидродинамика технологических аппаратов. М.: Машиностроение, 1983 г., гл.4, с.92-118.

4. Газодинамика и теплообмен. Ученые записки № 369, выпуск 49. Издательство Ленинградского университета, 1973 г., с.85-100.

Класс F02K9/96 отличающиеся специальными устройствами для испытания или проверки и измерений

установка для определения окислительной стойкости углерод-углеродного композиционного материала -  патент 2529749 (27.09.2014)
стенд для испытания сопла -  патент 2528467 (20.09.2014)
способ установки геометрической оси камеры жрд и компенсирующее замыкающее устройство для его реализации -  патент 2526998 (27.08.2014)
генератор импульсов давления в акустических полостях камер сгорания и газогенераторов жрд -  патент 2523921 (27.07.2014)
установка для испытаний высотных ракетных двигателей на твердом топливе -  патент 2514326 (27.04.2014)
стенд для высотных испытаний ракетных двигателей с тонкостенными соплами -  патент 2513063 (20.04.2014)
экспериментальный ракетный двигатель твердого топлива -  патент 2506445 (10.02.2014)
способ определения скорости горения твердого ракетного топлива -  патент 2505699 (27.01.2014)
способ измерения величины зазора между раструбом и арматурой -  патент 2500914 (10.12.2013)
способ определения скорости горения твердого ракетного топлива -  патент 2494275 (27.09.2013)

Класс G01M15/00 Испытание машин и двигателей

установка для определения окислительной стойкости углерод-углеродного композиционного материала -  патент 2529749 (27.09.2014)
стенд для испытания сопла -  патент 2528467 (20.09.2014)
способ определения общего технического состояния смазочной системы двигателя внутреннего сгорания -  патент 2527272 (27.08.2014)
способ и устройство для оценки массы свежего воздуха в камере сгорания, способ оценки полного заполнения, блок записи для этих способов и автомобиль, оборудованный устройством для оценки -  патент 2525862 (20.08.2014)
способ диагностики флаттера лопаток рабочего колеса в составе осевой турбомашины -  патент 2525061 (10.08.2014)
способ испытаний газотурбинного двигателя -  патент 2525057 (10.08.2014)
способ замеров параметров выхлопных газов двс -  патент 2525051 (10.08.2014)
генератор импульсов давления в акустических полостях камер сгорания и газогенераторов жрд -  патент 2523921 (27.07.2014)
способ диагностирования газораспределительного механизма карбюраторного двигателя внутреннего сгорания и устройство для его осуществления -  патент 2523595 (20.07.2014)
универсальная установка для исследования рабочих процессов двс -  патент 2523594 (20.07.2014)
Наверх