фотополимеризующаяся композиция
Классы МПК: | C08L55/00 Композиции гомополимеров или сополимеров, получаемых реакциями полимеризации с участием только ненасыщенных углерод-углеродных связей, не отнесенные к группам 23/00 C08F2/48 ультрафиолетовыми или видимыми лучами C08G75/20 полисульфоны |
Автор(ы): | Ваниев Марат Абдурахманович (RU), Сидоренко Нина Владимировна (RU), Лукасик Владислав Антонович (RU), Белявцева Людмила Николаевна (RU), Дурмиш-Оглы Лариса Игоревна (RU), Новаков Иван Александрович (RU) |
Патентообладатель(и): | Государственное образовательное учреждение высшего профессионального образования Волгоградский государственный технический университет (ВолгГТУ) (RU) |
Приоритеты: |
подача заявки:
2008-12-24 публикация патента:
20.07.2010 |
Изобретение относится к разработке реакционно-способных фотополимеризующихся композиций на основе растворов полисульфона, используемых для получения покрытий различного назначения. Техническая задача - разработка композиции, позволяющей ускоренное получение покрытия с меньшим количеством технологических операций, повышение эластичности фотополимерных материалов на основе ПСФ, а также минимизация количества улетучивающегося на стадии формирования покрытия растворителя. Предложена фотополимеризующаяся композиция, включающая (мас.ч.): полисульфон на основе 2,2-бис(4-оксифенил)пропана и 4,4 -дихлордифенилсульфона с молекулярной массой 40000-56000 (35-50), стирол как растворитель (65-50), диакрилат или диметакрилат полиэтиленгликоля с молекулярной массой полиэтиленгликольного звена 400-600 в качестве полимеризационно-способного соединения (20-50) и 2,4,6-триметилбензоилдифенилфосфиноксид в качестве фотоинициатора (2-6). 2 табл.
Формула изобретения
Фотополимеризующаяся композиция, включающая полисульфон на основе 2,2-бис(4-оксифенил)пропана и 4,4 -дихлордифенилсульфона с молекулярной массой 40000-56000, растворитель, добавку полимеризационноспособного соединения и фотоинициатор, отличающаяся тем, что в качестве растворителя она содержит стирол, в качестве полимеризационноспособного соединения диакрилат или диметакрилат полиэтиленгликоля с молекулярной массой полиэтиленгликольного звена 400-600, а в качестве фотоинициатора - 2,4,6-триметилбензоилдифенилфосфиноксид при следующем соотношении компонентов, мас.ч:
Полисульфон на основе 2,2-бис(4-оксифенил)пропана | |
и 4,4 -дихлордифенилсульфона | 35-50 |
Стирол | 65-50 |
Диакрилат или диметакрилат полиэтиленгликоля | |
с молекулярной массой полиэтиленгликольного | |
звена от 400 до 600 | 20-50 |
2,4,6-триметилбензоилдифенилфосфиноксид | 2-6 |
Описание изобретения к патенту
Изобретение относится к промышленности полимеризационных пластмасс, в частности к разработке реакционно-способных фотополимеризующихся композиций на основе растворов полисульфона (ПСФ), и может быть использовано для получения покрытий различного назначения.
Целесообразность и возможность инвариантного применения этого полимера для покрытий как с точки зрения технологии их формирования, так и расширения ассортимента композиций на его основе, обусловлены тем, что это теплостойкий, прочный конструкционный термопласт с высокой ударной вязкостью. Как для основы пленкообразующих различного функционального назначения определяюще важным является его высокая химическая стойкость к воздействию большого ряда агрессивных сред. Вместе с тем, получение покрытий и пленок без применения высоких температур и специального оборудования реализуемо лишь путем растворения ПСФ в соответствующих растворителях. В частности, известны композиции, представляющие собой растворы полисульфона в кетонах, хлорированных углеводородах или полярных ароматических растворителях (Бюллер К.У. Тепло- и термостойкие полимеры. Пер. с нем. / Под ред. Я.С.Выгодского. - М., Химия, 1984. - 1056 с.). Кроме того, известен способ переработки ПСФ посредством растворения в циклогексаноне (пат. Великобритании № 2198440, МКИ C08L 81/06, 1989). В соответствии с этими техническими решениями возможно получение тонкомерных покрытий и пленок из растворов ПСФ методами лакокрасочной технологии за счет улетучивания растворителя и последующего пленкообразования.
Однако необходимость удаления растворителя обусловливает недостатки, связанные с диффузионными процессами, вызывающими значительные локальные внутренние напряжения в материале покрытий. В случаях использования высококипящих растворителей (циклогексанон, диметилформамид, диметилсульфоксид и др.) для ускорения стадии формирования покрытия требуется сушка посредством обдува горячим воздухом. При этом неизбежна повышенная усадка. Следствием этого может быть и низкий уровень адгезионного взаимодействия между субстратом и материалом покрытия. Ввиду большой доли безвозвратно теряемого растворителя существенны и эколого-экономические факторы.
Известны композиции, в которых ПСФ переводят в раствор, используя мономер в качестве полимеризационно-способного растворителя. Применяют стирол или его смесь с мономером акрилового ряда в определенных соотношениях. Объемное изделие получают путем полимеризации в массе мономеров в присутствии растворенного ПСФ под действием окислительно-восстановительных систем при комнатных и умеренно повышенных температурах в течение 16-24 часов (патент РФ № 2058339, С08G 75/20, опубл. 20.04.96).
Однако очевидно, что использование подобных растворных систем при именно таком способе инициирования для формирования защитных слоев неприемлемо из-за длительности процесса. Так как покрытия характеризуются большим отношением площади к толщине, то определяющим ограничением при полимеризации на подложке является ингибирующее влияние кислорода воздуха. Как следствие - торможение процесса, поверхностная липкость и неизбежное улетучивание мономера-растворителя.
Известны композиции, базирующиеся на смеси ПСФ с молекулярной массой 44300 и диакрилатного полимеризационно-способного соединения. Компоненты растворяют в дихлорметане с добавкой фотоинициатора. В качестве диакрилатного соединения применяют 2,2-бис(4-акрилоксидиэтоксифенил)пропан, а фотоинициатором служит 1-гидроксициклогексилфенилкетон. Образцы приготавливаются методом полива, выдерживаются в течение 12 часов при комнатной температуре для удаления основного количества растворителя и окончательно высушиваются в вакууме при 50°С 3 часа. Далее образцы нагреваются до соответствующей температуры и облучаются источником УФ-излучения с интенсивностью 10 мВт/см2 в атмосфере азота. После этого осуществляется еще и деполимеризация с использованием металлогалогеновых ламп высокого давления с интенсивностью света в области 365 нм, равной 75 мВт/см2 (Morphology and mechanical properties of polymer blends with photochemical reaction for photocurable /linear polymers/ Kazutaka Murata, Takanori Anazawa // Polymer 43 (2002) 6575-6583).
К недостаткам данного аналога следует отнести большое количество используемого растворителя, который требует обязательного диффузионного удаления. Путем применения таких растворных композиций реализуемо получение лишь тонкомерных пленок и покрытий. Кроме того, композиции включают в качестве полимеризационно-способного соединения диакрилат этоксилированного бисфенола А с «жесткими» ароматическими фрагментами дифенилолпропана в цепи. Продукты гомополимеризации таких соединений характеризуются повышенной твердостью и хрупкостью. В комбинации с полисульфоновой фазой достигается высокая разрывная прочность (66-73 МПа). Вместе с тем, используемое качественно-количественное сочетание компонентов негативно отражается на эластичности смесевых композитов с ПСФ.
Наиболее близким к предлагаемому является техническое решение по заявке (JP 2001329027 от 27.11.2001, RESIN COMPOSITE, COMPOSITION, AND THEIR PRODUCTION METHODS), в соответствии с которым используют линейный полисульфон на основе 2,2-бис(4-оксифенил)пропана и 4,4'-дихлордифенилсульфона, (мет)акрилаты с 2-6 (мет)акриловыми группами (а), (мет)акрилаты с одной (мет)акриловой группой (b), фотоинициатор 1-гидроксициклогексилфенилкетон, растворенные в дихлорметане. Содержание последнего может достигать 86%.
К причинам, препятствующим достижению требуемого технического результата при использовании известной растворной фотополимеризующейся композиции на основе полисульфона, относятся следующие. Во-первых, покрытие формируется длительно, в несколько стадий, необходимы нагрев и вакуум. Во-вторых, материал не обладает достаточными упругодеформационными свойствами (относительное удлинение при разрыве составляет лишь 7-12%). В-третьих, велико количество удаляемого растворителя (до 86% от состава композиции).
Технический результат предлагаемого изобретения - обеспечение возможности ускоренного получения покрытия с меньшим количеством технологических операций, повышение эластичности фотополимерных материалов на основе ПСФ, а также минимизация количества улетучивающегося на стадии формирования покрытия растворителя.
Указанный технический результат достигается за счет использования фотополимеризующейся композиции, включающей полисульфон на основе 2,2-бис(4-оксифенил)пропана и 4,4 -дихлордифенилсульфона с молекулярной массой 40000-56000, растворитель, добавку полимеризационно-способного соединения и фотоинициатор, отличающейся тем, что в качестве растворителя она содержит стирол, в качестве полимеризационно-способного соединения диакрилат или диметакрилат полиэтиленгликоля с молекулярной массой полиэтиленгликольного звена 400-600, а в качестве фотоинициатора 2,4,6-триметилбензоилдифенилфосфиноксид при следующем соотношении компонентов, мас.ч:
Полисульфон на основе 2,2-бис(4-оксифенил)пропана | |
и 4,4 -дихлордифенилсульфона | 35-50 |
Стирол | 65-50 |
Диакрилат или диметакрилат полиэтиленгликоля | |
с молекулярной массой от 400 до 600 | 20-50 |
2,4,6-триметилбензоилдифенилфосфиноксид | 2-6 |
Сущность изобретения заключается в использовании фотополимеризующейся композиции, состав которой обеспечивает возможность достаточно быстро формировать полисульфонсодержащие покрытия посредством ее облучения доступными источниками света с сохранением преимуществ нанесения композиций по лакокрасочной технологии. При этом ингибирующее влияние кислорода воздуха невелико, так как имеющийся в реакционной массе и на поверхности кислород способен переходить из синглетного состояния в триплетное (возбужденное) под действием квантов света ультрафиолетового диапазона. Вследствие этого его ингибирующая способность нивелируется, что приводит к увеличению скорости фотополимеризации и отсутствию поверхностной липкости в материале. Указанное обстоятельство обеспечивает возможность использовать даже стабилизированный (неочищенный от ингибитора) стирол.
Применение стирола в составе композиции детерминировано его хорошей растворяющей способностью по отношению к ПСФ и термодинамической совместимостью компонентов раствора, в том числе и с добавками полимеризационно-способного соединения (ПСС). Благодаря тому, что в условиях фотоиндуцированной полимеризации стирол сам превращается в высокомолекулярное соединение и участвует в реакции сополимеризации с ди(мет)акрилатом полиэтиленгликоля обеспечивается результат в части минимизации доли улетучивающегося растворителя.
Добавки полимеризационно-способных соединений, используемые в заявляемой композиции, способствуют, с одной стороны, более быстрому протеканию процесса фотополимеризации из-за наличия двух (мет)акрилатных групп (то есть большей функциональности по двойным связям по сравнению со стиролом). С другой - основная цепь в молекулах акрилатных полимеризационно-способных соединений, входящих в составы по заявляемому изобретению, состоит из оксиэтиленовых звеньев с большим количеством «шарнирных» кислородных мостиков, обеспечивающих повышенную гибкость и эластичность как продуктам гомо- и сополимеризации, так и полисульфонсодержащему композиционному материалу, получаемому из заявляемой фотополимеризующейся композиции. При этом совокупность достигаемых эффектов зависит и от содержания ди(мет)акрилата полиэтиленгликоля, а также его молекулярной массы (ММ). Наиболее предпочтительно применение полимеризационно-способного соединения с ММ полиэтиленгликольного звена от 400 до 600 в заявляемых количествах. Если использовать в составе фотополимеризующейся композиции полимеризационно-способные соединения с меньшей ММ, то не обеспечивается результат в части необходимых физико-механических свойств. Последнее относится и к материалам на основе систем ПСФ-стирол, полученных с добавкой полимеризационно-способного соединения менее 20 мас. ч. При введении в фотополимеризующуюся композицию ди(мет)акрилата полиэтиленгликоля более 50 мас.ч. прочностные свойства материалов снижаются.
Применение в композиции в качестве фотоинициатора именно 2,4,6-триметилбензоилдифенилфосфиноксида обосновано тем, что он характеризуется высокой фотохимической активностью в области с длиной волны более 360 нм. Это позволяет использовать доступные источники света с невысокой мощностью излучения, не требующие организации охлаждения в процессе инсоляции объекта (например, ртутные дуговые и трубчатые лампы типа ДРЛ и ДРТ) и обусловливает практическую применимость технического решения.
В исходном виде заявляемая фотополимеризующаяся композиция представляет собой одноупаковочный состав с регулируемой вязкостью, который при условии невоздействия на него света обладает длительным сроком хранения. При нанесении на подложку и последующем УФ-облучении в течение 8-15 минут непосредственно на ней происходит образование покрытия, адгезионно связанного с субстратом. При необходимости, аналогичным путем могут быть получены материалы в виде свободных пленок толщиной до 600 мкм. Таким образом, количество технологических операций минимизируется. Стадии испарения растворителя и дополнительного нагрева отсутствуют. В целом, вышеизложенное и определяет сущность технического решения, которое в сравнении с аналогами и прототипом, по достигаемому результату более эффективно.
Заявляемые интервалы по содержанию ПСФ и стирола обусловлены двумя следующими основными факторами: во-первых, вязкость композиций, которая зависит главным образом от количества растворенного ПСФ, должна быть необходимой и достаточной для нанесения составов методами лакокрасочной технологии; во-вторых, так как свойства получаемого материала во многом определяются концентрацией исходно растворенного ПСФ, то предпочтительно максимально возможное содержание последнего в рецептуре композиции.
Если количество растворенного ПСФ меньше 35 массовых частей, то возможно получение технологичных низковязких растворов, но они склонны к отеканию с наклонных и вертикальных поверхностей, а продукты фотополимеризации обладают худшим комплексом свойств. В случаях использования в составе композиций полисульфона больше, чем в заявляемом соотношении, они характеризуются резким нарастанием вязкости. Такие полисульфонстирольные системы потенциально непригодны для формирования покрытий способами, применяемыми в лакокрасочной технологии. В целом, по указанным причинам, составы, содержащие менее 35 и более 50 массовых частей ПСФ, не иллюстрируются примерами.
Согласно изобретению в качестве полисульфона применяется продукт взаимодействия динатриевой соли дифенилолпропана (бисфенола А) и 4,4'-дихлордифенилсульфона (ТУ-6-06-66-88) с молекулярной массой 40000-56000 и со следующей структурной формулой элементарного звена:
Фотоинициатором служит 2,4,6-триметилбензоилдифенилфосфиноксид, производимый под торговой маркой Esacure TPO
В качестве полимеризационно-способных соединений используют следующие продукты:
Диметакрилат полиэтиленгликоля с молекулярной массой (ММ) ПЭГ-звена 600, n=14
Диакрилат полиэтиленгликоля, с молекулярной массой (ММ) ПЭГ-звена 400-600, n=9-14
Активным растворителем выступает стирол, соответствующий ГОСТ 10003-90.
Рецептуры предлагаемых и контрольных композиций, а также по прототипу приведены в таблице 1.
Таблица 1 | |||||||||||||
Составы композиций по примерам и прототипу | |||||||||||||
Компоненты композиций | Составы композиций по примерам, мас. ч. | ||||||||||||
Предлагаемые | Контрольные | Прототип (примеры 1-3) | |||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | ||
Полисульфон | 40 | 35 | 50 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 3-4 |
Стирол | 60 | 65 | 50 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | - |
Диакрилат полиэтиленгликоля с ММ ПЭГ-звена 600 | 30 | 20 | 50 | 38 | - | - | - | - | - | - | 30 | 30 | - |
Диметакрилат полиэтиленгликоля ММ ПЭГ-звена 600 | - | - | - | - | 38 | - | 10 | - | 60 | - | - | - | - |
Диакрилат полиэтиленгликоля ММ ПЭГ-звена 400 | - | - | - | - | - | 38 | - | 10 | - | 60 | - | - | - |
2,4,6-триметилбензоилдифенилфосфиноксид | 4 | 2 | 6 | 4 | 4 | 4 | - | - | - | - | 1 | 7 | - |
1-гидроксициклогексилфенилкетон | - | - | - | - | - | - | - | - | - | - | - | - | 0,2-0,3 |
Дихлорметан | - | - | - | - | - | - | - | - | - | - | - | - | 83-86 |
Смесь дициклопентанилдиакрилата с монофункциональными (мет)акрилатами | - | - | - | - | - | - | - | - | - | - | - | - | 10-13 |
Изобретение иллюстрируется следующими примерами.
Пример 1. Используют соотношения, близкие к средним (предпочтительная рецептура). Для этого к 40 г полисульфона добавляют 60 г стирола. При нагревании до 80°С и периодическом перемешивании получают однородный раствор. Добавляют 30 г диакрилата полиэтиленгликоля с ММ=600 и 4 г фотоинициатора (2, 4, 6-триметилбензоилдифенилфосфиноксида). Смесь гомогенизируют и часть ее после охлаждения отбирают для определения динамической вязкости на вискозиметре Брукфильда. Другую часть наносят свободнолитьевым методом в толщине 500-600 мкм на взвешенную силиконовую или фторопластовую подложку и подвергают облучению под действием полного спектра источника УФ-света типа ДРТ-400 с расстояния 25 см (энергетическая освещенность поверхности составляет 40 Вт/м2) в течение 15 минут. Затем подложку вместе с составом вновь взвешивают на аналитических весах и по разности масс определяют количество (долю) улетучившейся компоненты. Полученный таким образом материал отслаивают и испытывают по ГОСТ 11262-80 для оценки упругопрочностных свойств, фиксируя условную прочность при разрыве и относительное удлинение. Свойства растворов и продуктов фотополимеризации приведены в таблице 2.
Пример 2. В отличие от примера 1 используют минимальные заявляемые соотношения компонентов. Исследуют раствор, отверждают и испытывают материал аналогично примеру 1.
Пример 3. Готовят и исследуют раствор ПСФ в стироле, подвергают облучению и тестируют материал по примеру 1, но используют максимальные дозировки всех компонентов.
Пример 4. По аналогии с примером 1 готовят композицию, в которую в качестве полимеризационно-способного соединения вводят 38 г (среднее содержание) диакрилата полиэтиленгликоля с ММ полиэтиленгликольного звена 600.
Пример 5. По аналогии с примером 4 для сравнения готовят композицию, но в качестве полимеризационно-способного соединения используют диметакрилат полиэтиленгликоля с ММ полиэтиленгликольного звена 600 в количестве 38 г.
Пример 6. По аналогии с примером 4 для сравнения готовят композицию, но в качестве полимеризационно-способного соединения используют 38 г диакрилата полиэтиленгликоля, имеющего ММ полиэтиленгликольного звена 400.
Пример 7. Готовят и исследуют раствор и материал как в примере 1, но количество диакрилата составляет 10 г (заграничная дозировка по минимальному содержанию ПСС).
Пример 8. Готовят и исследуют раствор и материал как в примере 1, но количество диметакрилата составляет 10 г (заграничная дозировка по минимальному содержанию данного типа ПСС).
Пример 9. Готовят и исследуют раствор и материал как в примере 1, но количество диакрилата с ММ полиэтиленгликольного звена 600 составляет 60 г (заграничная дозировка по максимальному содержанию ПСС).
Пример 10. Готовят и исследуют раствор и материал как в примере 1, но количество диметакрилата с ММ полиэтиленгликольного звена 600 составляет 60 г (заграничная дозировка по максимальному содержанию данного типа ПСС).
Пример 11. Получают материал в соответствии с примером 1, но содержание 2,4,6-триметилбензоилдифенилфосфиноксида в композиции составляет 1 г (заграничное соотношение по минимальному количеству фотоинициатора).
Пример 12. Получают материал в соответствии с примером 1, но содержание 2,4,6-триметилбензоилдифенилфосфиноксида в композиции составляет 7 г (заграничное соотношение по максимальному количеству фотоинициатора).
Таблица 2 | |||||||||||||
Свойства растворов и материалов, полученных из фотополимеризующихся композиций | |||||||||||||
Свойства растворов и материалов | Фотополимеризующиеся композиции по примерам | ||||||||||||
предлагаемые | контрольные | прототип | |||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11* | 12** | ||
Динамическая вязкость при 20°С, Па·с | 12,4 | 5,0 | 210,0 | 10,0 | 22,6 | 9,3 | 29,3 | 33,2 | 16,0 | 18,1 | 12,4 | 12,4 | 2-9 |
Доля улетучивающейся компоненты, % | 1,0 | 4,0 | 1,0 | 1,5 | 1,5 | 1,6 | 2,4 | 2,5 | 1,0 | 1,0 | 18 | 0,7 | 83-86 |
Условная прочность при разрыве, МПа | 29,8 | 16,0 | 35,0 | 31,4 | 29,1 | 31,9 | 23,2 | 18,0 | 14,6 | 13,6 | - | - | 46,0-68,0 |
Относительное удлинение при разрыве, % | 45 | 60 | 15 | 22 | 20 | 15 | 12 | 9 | 65 | 20 | - | - | 4,3-10,3 |
Время, необходимое для формирования покрытия из готового раствора, мин | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | - | 2 | >180 |
* Материал за 15 минут облучения не формируется из-за низкой скорости процесса. | |||||||||||||
** Через 2 минуты облучения с поверхности образуется слой «шагрени» ввиду высокой скорости фотополимеризации; материал дефектен и не имеет технической ценности. |
Данные таблицы 2 свидетельствуют о том, что вязкость растворов (а следовательно, и их технологичность) поддается регулированию за счет изменения соотношения компонентов в рамках заявляемых. Путем использования растворов ПСФ в стироле с добавками ПСС и обоснованно подобранного фотоинициатора возможно получение материалов, процесс формирования которых в отличие от композиции-прототипа характеризуется минимальной долей улетучивающихся компонентов. Создание материала из предлагаемой растворной композиции не требует специального подвода тепла извне и применения вакуума для диффузионного отделения растворителя. Количество технологических операций сокращается. Принципиальное отличие в части технического результата заключается еще в том, что наряду с ПСС растворяющий агент в условиях фотоиндуцированной полимеризации также превращается в полимерный продукт, а посредством использования ди(мет)акрилатных соединений определенной природы в обозначенных рецептурных соотношениях с другими компонентами, достижимо получение материалов с показателями относительного удлинения в пределах 45-60% с достаточно высокими прочностными свойствами и соизмеримыми значениями ударной вязкости. При этом предпочтительно применение диакрилатов и диметакрилатов полиэтиленгликоля с ММ=600, так как материалам свойственен лучший баланс упругопрочностных характеристик.
Таким образом, вышеизложенные сведения свидетельствуют о выполнении при использовании заявленного изобретения следующей совокупности условий: средство, воплощающее заявленное изобретение при его осуществлении, предназначено для использования в производстве покрытий и свободных пленок на основе растворов ПСФ в стироле с добавками ПСС и фотоинициатора путем фотоиндуцированной полимеризации; для заявляемого технического решения в том виде, как оно охарактеризовано в независимом пункте формулы изобретения, подтверждена возможность его осуществления с помощью вышеописанных в заявке или известных до даты приоритета средств и методов; средство, воплощающее заявленное изобретение при его осуществлении, способно обеспечить достижение усматриваемого заявителем технического результата.
Следовательно, заявленное изобретение соответствует требованию "Промышленная применимость" по действующему законодательству.
Класс C08L55/00 Композиции гомополимеров или сополимеров, получаемых реакциями полимеризации с участием только ненасыщенных углерод-углеродных связей, не отнесенные к группам 23/00
Класс C08F2/48 ультрафиолетовыми или видимыми лучами