титановый сплав для силовых крепежных элементов

Классы МПК:C22C14/00 Сплавы на основе титана
Автор(ы):, , , ,
Патентообладатель(и):ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ УНИТАРНОЕ ПРЕДПРИЯТИЕ "ЦЕНТРАЛЬНЫЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ "ПРОМЕТЕЙ" (ФГУП "ЦНИИ КМ "ПРОМЕТЕЙ") (RU)
Приоритеты:
подача заявки:
2009-01-11
публикация патента:

Изобретение относиться к металлургии, а именно к титановым сплавам, и предназначено для использования в атомном энергомашиностроении при производстве силовых крепежных элементов фланцевых соединений и разъемов различных технологических систем реакторного оборудования атомных и термоядерных установок. Для получения высокотехнологичного титанового сплава с улучшенным комплексом основных механических и служебных свойств предложен титановый сплав, содержащий, мас.%: алюминий 2,5-3,5, молибден 4,5-5,5, ванадий 4,5-5,0, цирконий 0,1-0,3, железо 0,05-0,25, кремний 0,05-0,15, ниобий 0,1-0,3, вольфрам 0,03-0,08, никель 0,05-0,1, церий 0,003-0,008, углерод 0,03-0,10, кислород 0,05-0,15, азот 0,01-0,05, водород 0,005-0,010, титан - основа, при этом суммарное содержание углерода и азота не превышает 0,12%. Обеспечивается повышение работоспособности и эксплуатационной надежности силового крепежа фланцевых соединений и разъемов различных сосудов давления, трубопроводов и арматуры реакторного оборудования. 3 табл.

Формула изобретения

Титановый сплав для силовых крепежных элементов, содержащий алюминий, молибден, ванадий, цирконий, железо, кремний, углерод, кислород, азот, водород и титан, отличающийся тем, что он дополнительно содержит ниобий, вольфрам, никель и церий при следующем соотношении компонентов, мас.%:

Алюминий2,5-3,5
Молибден 4,5-5,5
Ванадий 4,5-5,0
Цирконий 0,1-0,3
Железо 0,05-0,25
Кремний0,05-0,15
Ниобий 0,1-0,3
Вольфрам 0,03-0,08
Никель 0,05-0,1
Церий0,003-0,008
Углерод 0,03-0,10
Кислород0,05-0,15
Азот 0,01-0,05
Водород0,005-0,010
Титан Основа,


при этом суммарное содержание углерода и азота не превышает 0,12%.

Описание изобретения к патенту

Изобретение относится к металлургии титановых сплавов, содержащих в качестве основы титан с заданным соотношением легирующих и примесных элементов, и предназначено для использования в атомном энергетическом машиностроении при производстве силовых крепежных элементов фланцевых соединений и герметичных разъемов различных сосудов давления, трубопроводов и арматуры реакторного оборудования.

Известны конструкционные титановые материалы, применяемые в машиностроении и атомной энергетике (например, титановые сплавы типа ВТ, ОТ и ПТ, а также другие аналоги), указанные в государственных и отраслевых стандартах, а также в научно-технической литературе [1-5]. Однако известные сплавы в ряде случаев не обеспечивают требуемого уровня и стабильности основных физико-механических и служебных характеристик материала в условиях длительной высокотемпературной эксплуатации силового крепежа, что снижает работоспособность и эксплуатационную надежность энергетического оборудования и не отвечает требованиям, предъявляемым к объектам ядерной энергетики при их эксплуатации в течение заданного ресурса.

Наиболее близким к заявленной композиции по базовому составу и функциональному назначению является титановый (титановый сплав для силовых крепежных элементов, патент № 2391426 +титановый сплав для силовых крепежных элементов, патент № 2391426 ) сплав марки ВТ 16 системы Ti-Al-Mo-V ОСТ 1.90013 [1], содержащий в своем составе легирующие и примесные элементы в следующем соотношении, в мас.%:

Алюминий1,6-3,0
Молибден 4,5-5,5
Ванадий 4,5-5,0
Цирконий титановый сплав для силовых крепежных элементов, патент № 2391426 0,3
Железотитановый сплав для силовых крепежных элементов, патент № 2391426 0,25
Кремнийтитановый сплав для силовых крепежных элементов, патент № 2391426 0,15
Углеродтитановый сплав для силовых крепежных элементов, патент № 2391426 0,10
Кислородтитановый сплав для силовых крепежных элементов, патент № 2391426 0,15
Азоттитановый сплав для силовых крепежных элементов, патент № 2391426 0,05
Водородтитановый сплав для силовых крепежных элементов, патент № 2391426 0,015
Титаноснова

Известный титановый сплав характеризуется недостаточно высоким уровнем кратковременной и длительной прочности при температурах эксплуатации (до 300°С) крепежных элементов реакторного оборудования. Вместе с тем этот сплав обладает низким сопротивлением усталости в агрессивных средах, а также пониженными значениями пластичности и ударной вязкости после нейтронного облучения.

Техническим результатом настоящего изобретения является создание титанового сплава для силовых крепежных элементов, обладающего более высоким уровнем кратковременной и длительной прочности при температурах эксплуатации крепежных элементов реакторного оборудования (300°С), повышенным сопротивлением усталости в агрессивных средах, а также более высокими значениями пластичности и ударной вязкости после нейтронного облучения.

Технический результат достигается за счет того, что в титановом сплаве для силовых крепежных элементов, содержащем алюминий, молибден, ванадий, цирконий, железо, кремний, титан, углерод, кислород, азот, водород, согласно изобретению дополнительно введены ниобий, вольфрам, никель и церий при следующем соотношении компонентов, мас.%:

Алюминий2,5-3,5
Молибден 4,5-5,5
Ванадий 4,5-5,0
Цирконий 0,1-0,3
Железо 0,05-0,25
Кремний0,05-0,15
Ниобий 0,1-0,3
Вольфрам 0,03-0,08
Никель 0,05-0,1
Церий0,003-0,008
Углерод 0,03-0,10
Кислород0,05-0,15
Азот 0,01-0,05
Водород0,005-0,010
Титан основа

При этом суммарное содержание углерода и азота не должно превышать 0,12% при значительном ограничении (до 0,010%) содержания водорода в твердом растворе.

Соотношение указанных легирующих и примесных элементов выбрано таким, чтобы заявляемый сплав после соответствующей термической обработки обеспечивал формирование наиболее оптимального структурного состояния, требуемый уровень и стабильность важнейших стуктурно-чувствительных характеристик материала, во многом определяющих заданную работоспособность и эксплуатационную надежность силового крепежа фланцевых соединений и технологических разъемов герметизирующих устройств реакторного оборудования.

Комплексное введение в заданную композицию микролегирющих и модифицирующих добавок ниобия, вольфрама, никеля и церия в указанном соотношении с другими легирующими элементами, прежде всего с алюминием, молибденом и ванадием, улучшает структурную стабильность и деформационную способность материала, снижает его чувствительность к коррозионно-усталостному разрушению при длительной эксплуатации в рабочих средах, а ограничение суммарного содержания азота и углерода повышает работу зарождения и развития трещин в условиях статического и динамического нагружений. При этом, как показали результаты исследований [5-9], происходит более равномерное распределение легирующих элементов по всему сечению слитка и полуфабрикатов, металл эффективнее очищается от вредных примесей и газов, более активно идет формирование мелкозернистой структуры с равноосной формой зерен, тоньше и чище становяться их границы, увеличивается прочность межкристаллитной связи, что в целом обеспечивает значительное повышение пластичности и вязкости металла в сложных условиях длительной эксплуатации силового крепежа. Введение модифицирующих добавок вне указанных в формуле изобретения пределов снижает эффективность их положительного влияния и не приводит к заметному улучшению этих структурно-чувствительных характеристик работоспособности материала крепежных элементов.

Фрактографический анализ поверхности изломов образцов методом сканирования на растровом электронном микроскопе показал, что в заявляемом сплаве доля вязкой составляющей в зоне усталостного разрушения металла заметно возрастает, по сравнению с известным составом.

Полученный более высокий уровень основных механических и служебных характеристик сплава обеспечивается комплексным легированием заявляемой композиции в указанном соотношении с другими элементами, сбалансированным химическим и фазовым составом, нормированным содержанием вводимых микролегирющих и модифицирующих добавок, а также контролем чистоты металла по содержанию остаточных вредных примесей.

В ФГУП «ЦНИИ КМ «Прометей» совместно с другими предприятиями отрасли в соответствии с планом проводимых научно-исследовательских разработок в рамках федеральной целевой программы «Энергетика-2015» выполнен необходимый комплекс лабораторных, расчетных и опытно-технологических работ по выплавке, пластической и термической обработке создаваемой марки сплава. Металл выплавлялся в вакуумных гарнисажных электропечах с магнитоуправляемой дугой с последующей обработкой на кузнечно-прессовом оборудовании с получением полуфабрикатов требуемого сортамента.

Химический состав исследованных материалов и результаты определения основных механических и служебных характеристик представлены в табл.1-3.

Ожидаемый технико-экономический эффект от применения разработанного титанового сплава в атомной энергетике и других отраслях народного хозяйства выразится в повышении эксплуатационной надежности и ресурса работы высоконагруженных фланцевых соединений и герметичных разъемов реакторного оборудования создаваемых атомных и термоядерных установок.

титановый сплав для силовых крепежных элементов, патент № 2391426

Таблица 2
Механические и эксплуатационные свойства исследованных материалов в отожженном состоянии
Состав Условный номер сплава Механические свойства при температуре, °С Предел длительной прочности, титановый сплав для силовых крепежных элементов, патент № 2391426 1000титановый сплав для силовых крепежных элементов, патент № 2391426 300°C Ударная вязкость KCU и относительное удлинение титановый сплав для силовых крепежных элементов, патент № 2391426 5 после нейтронного облучения Тип зерна
20 300
титановый сплав для силовых крепежных элементов, патент № 2391426 в титановый сплав для силовых крепежных элементов, патент № 2391426 0,2 титановый сплав для силовых крепежных элементов, патент № 2391426 5 титановый сплав для силовых крепежных элементов, патент № 2391426 титановый сплав для силовых крепежных элементов, патент № 2391426 в титановый сплав для силовых крепежных элементов, патент № 2391426 0,2 титановый сплав для силовых крепежных элементов, патент № 2391426 5 титановый сплав для силовых крепежных элементов, патент № 2391426
МПа % МПа %МПа кДж/м2 %
Заявляемый1 890 83319,8 62,6764 73117,8 68,0614 68016,5 6
2 915 85418,2 58,3782 75519,4 66,2628 65014,7 6
3 930 87017,9 56,7815 77218,1 63,7645 63816,1 6
Известный 4 824785 16,054,0 748718 17,362,1 598620 12,04
Примечание: 1. Результаты механических испытаний усреднены по трем образцам на точку
2. Испытания на длительную прочность проводили при 300°С на базе 1000 часов в соответствии с ГОСТ 10145
3.Нейтронное облучение образцов проводили в активной зоне водо-водяного реактора ВВР-М при дозе облучения Ф=1020 нейтр/см 2 (энергия нейтронов Е=0,5 МэВ), температура облучения Тобл.=300°С

Таблица 3
Усталостная и коррозионно-усталостная прочность исследованных сплавов
Состав Условный номер сплава Пределы выносливости титановый сплав для силовых крепежных элементов, патент № 2391426 -1, МПа на базе 107 циклов при испытании
на воздухе в синтетической морской воде
гладкие образцы с надрезомгладкие образцыс надрезом
Заявленный1 469 275442 239
2 482 292463 251
3 498 328472 264
Известный 4 437257 398198
Примечание. Усталостные испытания проводили на консольных образцах в условиях поперечного изгиба с вращением по симметричному циклу (ГОСТ 25.502-79).

Литература

1. ОСТ 1 90013-71 «Сплавы титановые» (марки), прототип.

2. ОСТ 1 90202-75 «Прутки горячекатаные из сплава марки ВТ 16».

3. ГОСТ 19807 «Титан и сплавы титановые деформируемые» (марки).

4. Б.Б. Чечулин, С.С.Ушков и др. Титановые сплавы в машиностроении. Изд-во «Машиностроение», Л. 1977.

5. И.В.Горынин, В.В.Рыбин, С.С.Ушков и др. Титановые сплавы как перспективный реакторный материал. Сб.ст. «Радиационное материаловедение и конструкционная прочность реакторных материалов» Изд-е ЦНИИ КМ «Прометей», С-Пб, 2002.

6. К.Д.Хромушкин, А.Н.Савкин «Влияние напряжений затяжки на релаксационную стойкость и усталостную прочность резьбового соединения». Сб. Судостроительная промышленность. Вып.1, С-Пб, 1986.

7. В.А.Межонов, К.Д.Хромушкин «Влияние антизадирных покрытий на характеристики свинчиваемости и коррозионно-механическую прочность болтов из титановых сплавов». Сб. Судостроительная промышленность. Вып.11, С-Пб, 1991.

8. О.А.Кожевников, В.В.Рыбин, Е.В.Нестерова и др. «Механические свойства, тонкая структура и микромеханизмы разрушения облученных нейтронами сплавов титана». Журнал «Металловедение и термическая обработка металлов», № 9, 1999.

9. И.И.Горынин, С.С.Ушков, А.Н.Хатунцев, Н.И.Лошакова «Титановые сплавы для морской техники». Изд-во «Политехника». С-Пб, 2007.

Класс C22C14/00 Сплавы на основе титана

способ изготовления заготовок из титана -  патент 2529131 (27.09.2014)
сплав на основе алюминида титана и способ обработки заготовок из него -  патент 2525003 (10.08.2014)
способ получения отливок сплавов на основе гамма алюминида титана -  патент 2523049 (20.07.2014)
сплав на основе гамма алюминида титана -  патент 2520250 (20.06.2014)
сплав для поглощения тепловых нейтронов на основе титана -  патент 2519063 (10.06.2014)
быстрозакаленный припой из сплава на основе титана-циркония -  патент 2517096 (27.05.2014)
способ получения сплавов на основе титана -  патент 2515411 (10.05.2014)
сплав на основе титана и изделие, выполненное из него -  патент 2507289 (20.02.2014)
способ получения порошков сплавов на основе титана, циркония и гафния, легированных элементами ni, cu, ta, w, re, os и ir -  патент 2507034 (20.02.2014)
сплав на основе титана -  патент 2506336 (10.02.2014)
Наверх