высокотемпературный металлокерамический композит

Классы МПК:C22C1/05 смеси металлического порошка с неметаллическим
C22C29/12 на основе оксидов
H01H1/02 отличающиеся по материалу 
Автор(ы):, , , , ,
Патентообладатель(и):Поповский Григорий Николаевич (RU)
Приоритеты:
подача заявки:
2008-04-07
публикация патента:

Изобретение относится к электротехнике, в частности к производству контактов из высокотемпературных материалов, устройств отключения тока на мощных линиях электропередач и в качестве защитных средств в соплах ракетных двигателей. Высокотемпературный металлокерамический композит состоит из пропитанного серебром или медью пористого каркаса, сформированного из зерен электроплавленной двуокиси циркония, стабилизированной 10-35 мас.% оксида иттрия, металлизированных слоем карбонильного вольфрама толщиной 30-50 мкм. Материал обладает высокими электропроводностью и теплопроводностью при низком содержании вольфрама. 1 з.п. ф-лы.

Формула изобретения

1. Высокотемпературный металлокерамический композит, состоящий из пропитанного серебром или медью пористого каркаса, содержащего вольфрам, отличающийся тем, что пористый каркас сформирован из зерен электроплавленной двуокиси циркония, стабилизированной 10-35 мас.% оксида иттрия, металлизированных слоем карбонильного вольфрама толщиной 30-50 мкм.

2. Композит по п.1, отличающийся тем, что он получен путем смешивания металлизированных зерен электроплавленной двуокиси циркония, стабилизированной 10-35 мас.% оксида иттрия, порошка вольфрама и карбоната аммония, прессования смеси, спекания и пропитки раскисленной медью или серебром в вакууме 5-10-1 мм рт.ст.

Описание изобретения к патенту

Изобретение относится к классу материалов, обладающих высокими служебными свойствами при высоких температурах (выше 2000°С), а именно: формоустойчивостью, электро- и теплопроводностью, химической инертностью в газовых средах и др.

Может быть использовано при изготовлении контактов в устройствах отключения тока на мощных линиях электропередач, вкладышей в соплах ракетных двигателей и др.

Известно, что главными требованиями к материалам для контактов являются сохранение высокой твердости при температурах 1500°-2000°С в сочетании с высокой электропроводностью, стойкостью против приваривания (В.П.Елютин. Высокотемпературные материалы. М.: Металлургия. 1973 г. Стр.17-20).

Известно также, что промышленное значение для этих целей получили псевдосплавы типа вольфрам-медь, вольфрам-серебро, получаемые методом пропитки пористых вольфрамовых изделий жидким серебром или жидкой медью. Такие контакты хорошо работают и не плавятся даже при напряжениях в сотни тысяч вольт и силе тока в несколько тысяч ампер (В.Т.Сыркин. Карбонильные металлы. М.: Металлургия. 1978 г. Стр.158).

Содержание вольфрама в упомянутых контактах и др. изделиях составляет до 90%.

«Отличная стойкость деталей из пористого вольфрама, пропитанного серебром или медью, связана с охлаждением детали за счет тепла, которое тратится на плавление, нагрев и испарение меди или серебравысокотемпературный металлокерамический композит, патент № 2389814 Этот материал относится к классу композиционных» (В.П.Елютин. Высокотемпературные материалы. М.: Металлургия. 1973 г. Стр.17-20).

Цель изобретения - получение высокотемпературного композита, обладающего одновременно высокими электро- и теплопроводностью, одновременно со снижением расхода остродефицитных тугоплавких металлов, в частности вольфрама.

Одним из путей достижения поставленной цели является использование электроплавленной двуокиси циркония ZrO2 , стабилизированной 10%-35% (по массе) окислами иттрия, так называемый фианит, зерна которого металлизированы карбонильным вольфрамом (Фианит - разработка Физического института Академии наук СССР. Имеется промышленное производство).

Фианит химически инертен ко всем металлам на воздухе до 2000°С, изотропен, обладает низкой испаряемостью и высокой термостойкостью, является диэлектриком, при температуре 1000°С обладает наивысшей из всех окислов электропроводностью, имеет высокую температуру плавления - 2770°С.

С повышением температуры нагрева выше 1000°С удельное электросопротивление падает в десятки тысяч раз и, соответственно, возрастает электропроводимость (М.А.Рубашев. Термостойкие диэлектрики. М.: Атомиздат. 1980 г. Стр.65-67, 163-170).

После снятия внутренних напряжений отжигом при 2500°С зерна фианита металлизируют в кипящем слое карбонильным вольфрамом слоем 30-50 микрон и далее в смеси с карбонатом аммония (NH4)2CO3 при давлении от 3.0 т.с./см2 прессуют в заготовки, направляемые на спекание при 1400°С в вакууме 5×10 -1 мм рт.ст.

Таким образом, обеспечивают создание жесткого пористого металлокерамического каркаса изделия заданной формы.

Полученный пористый каркас после предварительного обезгаживания и подогрева в вакууме погружают в расплав раскисленной жидкой меди в вакууме 5×10-1 мм рт.ст., что обеспечивает получение формоустойчивого высокотеплоэлектропроводного изделия требуемой формы с низким содержанием вольфрама.

Класс C22C1/05 смеси металлического порошка с неметаллическим

спеченная твердосплавная деталь и способ -  патент 2526627 (27.08.2014)
композиционный электроконтактный материал на основе меди и способ его получения -  патент 2525882 (20.08.2014)
способ получения поликристаллического композиционного материала -  патент 2525005 (10.08.2014)
шихта для изготовления материала для сильноточных электрических контактов и способ изготовления материала -  патент 2523156 (20.07.2014)
твердосплавное тело -  патент 2521937 (10.07.2014)
способ получения беспористого карбидочугуна для изготовления выглаживателей -  патент 2511226 (10.04.2014)
способ получения композиционного материала -  патент 2509818 (20.03.2014)
порошковый композиционный материал -  патент 2509817 (20.03.2014)
спеченный материал для сильноточного скользящего электроконтакта -  патент 2506334 (10.02.2014)
наноструктурный композиционный материал на основе чистого титана и способ его получения -  патент 2492256 (10.09.2013)

Класс C22C29/12 на основе оксидов

Класс H01H1/02 отличающиеся по материалу 

способ изготовления скользящих контактов -  патент 2529605 (27.09.2014)
способ нанесения покрытия для медных контактов электрокоммутирующих устройств -  патент 2509825 (20.03.2014)
контакт-деталь и способ ее изготовления -  патент 2451355 (20.05.2012)
способ изготовления электрических контактов на основе хрома и меди -  патент 2415487 (27.03.2011)
материал для электрических контактов и способ изготовления электрических контактов -  патент 2380781 (27.01.2010)
способ изготовления электрических контактов на основе хрома и меди -  патент 2369935 (10.10.2009)
способ нанесения покрытия на разрывные алюминиевые контакты электрокоммутирующих устройств -  патент 2366756 (10.09.2009)
способ получения серебряно-оловооксидного материала для электрических контактов -  патент 2346069 (10.02.2009)
слоистый электрический контакт -  патент 2298246 (27.04.2007)
спеченный электроконтактный материал на основе меди -  патент 2294975 (10.03.2007)
Наверх