коррозионно-стойкий чугун с шаровидным графитом

Классы МПК:C22C37/04 содержащие шаровидный графит 
C22C37/08 с никелем 
Автор(ы):, ,
Патентообладатель(и):Открытое акционерное общество "Научно-производственное объединение "Центральный научно-исследовательский институт технологии машиностроения" (ОАО НПО "ЦНИИТМАШ") (RU)
Приоритеты:
подача заявки:
2009-03-20
публикация патента:

Изобретение относится к литейному производству, в частности к составам коррозионностойких чугунов с шаровидным графитом. Может использоваться для производства рабочих органов грунтовых и песковых насосов и гидромашин, перекачивающих абразивные пульпы, смеси и суспензии. Коррозионностойкий чугун с шаровидным графитом содержит, мас.%: углерод 3,2-4,0; кремний 1,5-3,0; марганец 0,8-3,5; хром 7,0-10,0; никель 2,0-4,0; бор 0,2-0,4; ванадий 0,4-1,0; молибден 0,1-0,5; титан 0,1-0,4; алюминий 0,05-0,2; церий 0,03-0,2; магний 0,02-0,1; кальций 0,05-0,2; железо - остальное. Чугун обладает повышенной устойчивостью к воздействию коррозионно-абразивных сред. 2 табл.

Формула изобретения

Коррозионно-стойкий чугун с шаровидным графитом, содержащий углерод, кремний, марганец, хром, никель, бор, ванадий, алюминий, церий, магний, кальций и железо, отличающийся тем, что он дополнительно содержит молибден и титан при следующем соотношении компонентов, мас.%:

углерод3,2-4,0
кремний 1,5-3,0
марганец 0,8-3,5
хром 7,0-10,0
никель2,0-4,0
бор 0,2-0,4
ванадий 0,4-1,0
молибден 0,1-0,5
титан 0,1-0,4
алюминий 0,05-0,2
церий0,03-0,2
магний 0,02-0,1
кальций0,05-0,2
железо остальное

Описание изобретения к патенту

Изобретение относится к литейному производству, а именно к изысканию коррозионностойкого чугуна с шаровидным графитом для производства деталей, предназначенных для работы в условиях гидроабразивного износа, в частности для изготовления рабочих органов грунтовых и песковых насосов и гидромашин, перекачивающих абразивные пульпы, суспензии и смеси.

Известен износостойкий чугун, содержащий, мас.%: углерод 3,0-3,7; кремний 0,5-3,0; марганец 0,2-1,5; хром 4,0-15,0; никель 4,0-8,0; фосфор до 0,4; сера до 0,15; железо остальное (см. патент США № 2662011, кл.75-128, 1953). Недостатком этого чугуна является низкая концентрация растворенного хрома (до 6%) в его металлической основе. В связи с этим на поверхности изделий из него не образуется коррозионностойкая пассивирующая пленка. В результате чего он имеет низкую устойчивость к воздействию коррозионно-абразивных сред.

Известен хромоникелевый чугун с шаровидным графитом (см., например, описание к патенту РФ № 2234553, С1, 7 С22С 37110, 2004 г), выбранный в качестве прототипа по содержанию входящих компонентов и имеющих следующий состав, мас.%: углерод 3,2-4,0; кремний 1,4-2,5; марганец 0,4-1,2; хром 7,0-10,0; никель 2,5-5,5; бор 0,2-0,4; ванадий 0,6-1,0; алюминий 0,05-0,15; церий 0,05-0,20; магний 0,3-0,12; кальций 0,05-0,20; железо остальное.

В металлической основе указанного хромоникелевого чугуна с шаровидным графитом концентрация растворенного хрома достигает 11,8%. Благодаря этому он приобретает первую границу устойчивого пассивного состояния. Однако максимальная коррозионная стойкость у Fe-C сплавов обеспечивается, когда их основа содержит более 12% хрома [1].

Задачей предложенного изобретения является увеличение концентрации растворенного хрома (более 12%) в металлической основе хромоникелевого чугуна с шаровидным графитом с целью повышения устойчивости изделий из него к воздействию коррозионно-абразивных сред.

Технический результат, достигаемый при реализации предложенного технического решения, состоит в повышении коррозионной стойкости чугуна при снижении его себестоимости, предназначенного для изготовления отливок сложной конфигурации, например колес рабочих насосов для перекачки абразивных смесей, пульп и суспензий.

Указанный технический результат обеспечивается тем, что в предложенном хромоникелевом чугуне с шаровидным графитом, содержащем: углерод, кремний, марганец, хром, никель, бор, ванадий, алюминий, церий, магний, кальций, железо, дополнительно введен молибден и титан при следующем соотношении компонентов, мас.%: углерод 3,2-4,0; кремний 1,5-3,0; марганец 0,8-3,5; хром 7,0-10,0; никель 2,0-4,0; бор 0,2-0,4; ванадий 0,4-1,0; молибден 0,1-0,5; титан 0,1-0,4; алюминий 0,05-0,2; церий 0,03-0,2; магний 0,02-0,1; кальций 0,05-0,2; железо остальное.

Введение в состав предложенного чугуна молибдена позволяет увеличить концентрацию растворенного хрома в его металлической основе за счет частичного замещения молибденом атомов хрома в карбидной фазе.

Введение молибдена менее 0,1% не обеспечивает повышение концентрации растворенного хрома в металлической основе; увеличение содержания молибдена свыше 0,4% вызывает выделение карбидов молибдена типа Мо 2С, что не обеспечивает повышение концентрации хрома в металлической основе чугуна и, соответственно, его коррозионной стойкости.

Добавка в состав предложенного чугуна титана способствует увеличению концентрации растворенного хрома в его металлической основе за счет частичного замещения титаном атомов хрома в карбидной фазе.

Введение титана менее 0,1% не обеспечивает повышения концентрации растворенного хрома в металлической основе; увеличение содержания титана свыше 0,4% вызывает выделение карбидов титана TiC, что не обеспечивает повышение концентрации хрома металлической основе чугуна и, соответственно, его коррозионной стойкости.

Увеличение содержания марганца в чугуне позволяет повысить его концентрацию в аустените.

Введение марганца в количестве менее 0,8% не обеспечивает повышения достаточной концентрации марганца в аустените, что способствует частичному распаду аустенита при охлаждении в троостит, обладающему низкой коррозионной стойкостью. Это влечет за собой резкое снижение устойчивости хромоникелевого чугуна с шаровидным графитом к воздействию коррозионно-абразивных сред, вследствие чего срок службы изделий из него сокращается. Увеличение содержания марганца свыше 3,5% вызывает выделение карбидов марганца типа Мn3С, что повышает хрупкость чугуна и ухудшает обработку отливок резанием.

Уменьшение содержания никеля в чугуне позволяет понизить себестоимость изготовления литья.

Введение никеля в количестве менее 2,0% не обеспечивает достижения достаточной концентрации никеля в аустените, что способствует частичному распаду аустенита при охлаждении в коррозионно-неустойчивый троостит. Увеличение содержания никеля свыше 4,0% способствует повышению доли остаточного аустенита в металлической основе чугуна, в результате чего понижается его твердость.

Плавку чугуна проводят в индукционных или дуговых электропечах с использованием стандартных шихтовых материалов. Легирующие элементы - никель, молибден, хром и ванадий вводят в металлозавалку. После расплавления шихты и перегрева чугуна до 1450-1500°С на зеркало расплава вводят кремний и марганец в виде 75%-ного ферросилиция и 60%-ного ферромарганца. Затем присаживают алюминий и кальций (в виде 20%-ного силикокальция). Магний в составе сфероидизирующей присадки, а также церий, бор и титан в виде ферроцерия, ферробора и ферротитана вводят на дно разливочного ковша перед выпуском жидкого металла из печи.

В таблице 1 приведен химический состав известного и предложенного чугунов. В таблице 2 приведены их механические свойства и стойкость в агрессивно-абразивных средах.

Техническим результатом является, как видно из данных таблицы 2, более высокая концентрация хрома в металлической основе и, соответственно, более высокая коррозионная стойкость и износостойкость предлагаемого чугуна в сравнении с прототипом.

Временное сопротивление чугуна при изгибе (коррозионно-стойкий чугун с шаровидным графитом, патент № 2387729 изг) определяли на цилиндрических образцах (коррозионно-стойкий чугун с шаровидным графитом, патент № 2387729 30×340 мм) при расстоянии между центрами опор 300 мм (ГОСТ 27208-87).

Твердость по Роквеллу определяли на приборе ТК-2М по ГОСТ 9013-59.

Микрораспределение хрома в металлической основе чугуна изучали на микроанализаторе MS-46 «Cameca».

Коррозионную стойкость в сернокислотной среде определяли по потере массы образцов после испытания продолжительностью 75 часов по ГОСТ 5272-50.

Концентрация серной кислоты составляла 0,02%, а рН среды 4,5.

Износостойкость в условиях гидроабразивного изнашивания определяли методом чашечного шлифования на стенде конструкции ЦНИИТМАШ. В процессе испытания образцы (коррозионно-стойкий чугун с шаровидным графитом, патент № 2387729 10×110 мм) перемещаются в гидроабразивной пульпе, состоящей из абразива и воды при соотношении 2:1,3 (по объему). В качестве абразива использовали электрокорунд зернистостью 0,6-1,5 мм. Длительность испытания - 1,5 часа. Частота вращения диска составляла 500 об/мин-1 и контролировалась стробоскопическим тахометром, линейная скорость перемещения образца составляла 4,7 м/сек-1.

Применение предлагаемого хромоникелевого чугуна с шаровидным графитом для отливок, имеющих сложную конфигурацию, например колес рабочих насосов для перекачки абразивных смесей, пульп и суспензий, позволяет существенно (на 30-40%) увеличить срок службы деталей в эксплуатации при снижении себестоимости их изготовления на 20-30%.

Таблица 1
Чугун № плавки Содержание химических элементов, мас.%
СSi MnCr NiV MoTi ВСе MgCa Al
Пред-лага-емый11 3,2 0,50,8 3,02,0 0,40,1 0,10,2 0,030,02 0,050,05
12 2,71,8 2,28,5 33,00,7 0,80,35 0,30,12 0,060,13 0,13
13 4,0 3,03,5 10,04,0 1,00,5 0,40,4 0,20,1 0,20,2
Прототип 13,6 1,90,8 8,54,0 0,8- -0,3 0,120,8 0,10,3

Таблица 2
№ плавкиСодержание хрома в металлической основе, % Прочность, МПаТвердость, HRCСкорость коррозии в сернокислой среде, г/м2·н Коэффициент относительной износостойкости в условиях гидроабразивногоизноса
11 12,2905 620,44 6,8
12 12,8 91063 0,417,0
13 13,4902 640,38 7.2
1 11,8 90062 0,556,4

Источники информации

1. Томашев Н.Ф., Чернова Г.Л. Коррозия и коррозионностойкие сплавы. М.: Металлургия, 1973. - 232.

Класс C22C37/04 содержащие шаровидный графит 

износостойкий чугун с шаровидным графитом -  патент 2526507 (20.08.2014)
износостойкий чугун с шаровидным графитом -  патент 2511213 (10.04.2014)
способ определения обрабатываемости на станках чугуна с вермикулярным графитом -  патент 2509820 (20.03.2014)
способ термической обработки чугуна с шаровидным графитом -  патент 2504597 (20.01.2014)
зубчатое колесо и уравновешивающий вал для поршневого двигателя -  патент 2499070 (20.11.2013)
способ получения бейнитного чугуна при термической обработке -  патент 2490335 (20.08.2013)
радиационно стойкий аустенитный чугун с шаровидным графитом -  патент 2465363 (27.10.2012)
износостойкий чугун -  патент 2465362 (27.10.2012)
износостойкий чугун -  патент 2451100 (20.05.2012)
износостойкий чугун -  патент 2451099 (20.05.2012)

Класс C22C37/08 с никелем 

Наверх