высокотемпературный композиционный материал для уплотнительного покрытия

Классы МПК:B22F1/00 Специальная обработка металлических порошков, например для облегчения обработки, для улучшения свойств; металлические порошки как таковые, например смеси порошков различного состава
C23C4/10 оксиды, бориды, карбиды, нитриды, силициды или их смеси
Автор(ы):, , , ,
Патентообладатель(и):Федеральное государственное унитарное предприятие "Московское машиностроительное производственное предприятие "САЛЮТ" (ФГУП "ММПП "САЛЮТ") (RU)
Приоритеты:
подача заявки:
2008-08-14
публикация патента:

Изобретение относится к области порошковой металлургии и может быть использовано для получения высокотемпературного уплотнительного композиционного покрытия методом газотермического напыления при производстве газотурбинных двигателей для обеспечения стабильности зазоров в сопряженных элементах проточной части турбины. Высокотемпературный композиционный материал для уплотнительного покрытия включает компоненты при следующем соотношении, мас.%: гексагональный нитрид бора 5-15, алюмогель 3-6, стабилизированный диоксид циркония системы ZrO2 - 7-8% Y2 O3 - остальное до 100%. При этом содержание в материале основной фракции с частицами 20-100 мкм округлой формы составляет не менее 70% от общей массы материала. Изобретение позволяет повысить качество получаемого покрытия и упростить способ его нанесения. 1 з.п. ф-лы.

Формула изобретения

1. Высокотемпературный композиционный материал для уплотнительного покрытия, включающий гексагональный нитрид бора и стабилизированный диоксид циркония, отличающийся тем, что он дополнительно содержит алюмогель при следующем соотношении компонентов, мас.%:

гексагональный нитрид бора 5-15
алюмогель 3-6
стабилизированный диоксид циркония системы высокотемпературный композиционный материал для уплотнительного   покрытия, патент № 2386513
ZrO 2-7-8% Y2O3 остальное до 100%

2. Высокотемпературный композиционный материал по п.1, отличающийся тем, что содержание в нем основной фракции с частицами 20-100 мкм округлой формы составляет не менее 70% от общей массы материала.

Описание изобретения к патенту

Изобретение относится к области порошковой металлургии и может быть использовано для получения высокотемпературного уплотнительного композиционного покрытия методом газотермического напыления, например, плазменного напыления, а также при производстве газотурбинных двигателей для обеспечения стабильности зазоров в сопряженных элементах проточной части турбины.

Известен уплотнительный материал (А.С. № 1767926 А1, 15.08.1994, С23С 4/06), включающий рабочий слой, содержащий диоксид циркония (ZrO2), стабилизированный 5-10 мас.% оксида иттрия (Y2O3), а также нитрид бора (BN) и/или графит (С) при следующем соотношении компонентов, мас.%:

стабилизированный диоксид циркония 80-95
нитрид бора и/или графит 5-20

Недостатком данного технического решения является то, что порошковый материал, применяемый для получения данного уплотнительного покрытия, является механической смесью порошков, в которой частицы ZrO2 высокотемпературный композиционный материал для уплотнительного   покрытия, патент № 2386513 и BN (или BN+C) не связаны друг с другом, т.е. не скомпактированы в гранулы. В связи с тем, что BN является мелкодисперсным тугоплавким, инертным порошком, не образующим покрытия (в чистом виде), то в процессе напыления такого порошкового материала будет происходить его расслоение на составляющие компоненты, что приведет к потере BN в полученном покрытии.

Наиболее близким по технической сущности к предложенному материалу является высокотемпературный композиционный материал для уплотнительного покрытия (Патент РФ № 2303649 С2, 27.07.2007, С23С 4/10) - прототип, включающий нитрид бора и стабилизированный диоксид циркония. При этом композиционный материал содержит также нихромовое волокно длиной 3-5 мм, а стабилизированный диоксид циркония содержится в двух фракциях - диоксид циркония, стабилизированный 7% оксида иттрия, фракции 100-250 мкм и стабилизированный диоксид циркония активированной пылевидной фракции при следующем соотношении компонентов, мас.%:

стабилизированный диоксид циркония фракции 100-250 мкм 10- 15
нитрид бора 15-25
нихромовое волокно 9-12
стабилизированный диоксид циркониявысокотемпературный композиционный материал для уплотнительного   покрытия, патент № 2386513
активированной пылевидной фракции остальное

Недостатком данного технического решения является то, что получаемое из указанного материала покрытие имеет неоднородную плотность, низкое сцепление с поверхностью основы и невысокую рабочую температуру на воздухе (до 1000°С) из-за окисления при этой температуре нихромового волокна. Помимо этого повышается трудоемкость получения исходного состава композиционного материала и уплотнительного покрытия из него, поскольку данный способ требует нанесения влажного состава на поверхность основы ручным или механизированным способом, и также последующие сушку и прессование в вакууме при нагреве до 1100°С. А кроме того, нанесение используемого в данном решении композиционного материала требует применения специального дорогостоящего оборудования и приспособлений (вакуумные печи, термофиксаторы), особенно при нанесении на крупноразмерные конструкции сложной формы.

Технический результат заявленного изобретения - повышение качества получаемого покрытия.

Указанный технический результат достигается тем, что высокотемпературный композиционный материал для уплотнительного покрытия, включающий гексагональный нитрид бора и стабилизированный диоксид циркония, дополнительно содержит алюмогель при следующем соотношении компонентов, мас.%:

гексагональный нитрид бора 5-15
алюмогель 3-6
стабилизированный диоксид циркония системы ZrO2-7-8%Y2O3 остальное до 100%

При этом содержание в композиционном материале основной фракции с частицами 20-100 мкм округлой формы может составлять не менее 70% от общей массы материала.

Наличие нитрида бора (BN) в составе композиционного материала позволяет повысить термическую стойкость покрытия и, в паре с сопрягаемым элементом ротора турбины, снизить трение материала покрытия, улучшая прирабатываемость последнего.

При содержании в составе композиционного материала гексагонального нитрида бора более 15% формируется рыхлое термобарьерное покрытие с низкой эрозионной стойкостью в газовом потоке. А содержание в композиционном материале гексагонального нитрида бора менее 5% является нецелесообразным, поскольку не оказывает заметного влияния на улучшение истираемости керамического слоя.

Стабилизированный оксид циркония (ZrO2) служит для изготовления керамических деталей и нанесения теплозащитных покрытий термическим напылением. Процесс стабилизации оксида циркония оксидом иттрия позволяет получить твердый раствор с устойчивой тетрагональной решеткой, остающийся неизменным при нагреве и охлаждении материала, что позволяет исключить усадку при нагреве и расширение при охлаждении материала при термоциклах в ГТД. Покрытие, состав которого включает стабилизированный диоксид циркония, обладает высокой температурой плавления, высокой стойкостью к тепловым ударам, низкой теплопроводностью, твердостью, устойчивостью к действию кислот и щелочей, поэтому его использование позволяет противостоять высоким температурам и химически агрессивным средам при эксплуатации.

Наиболее оптимальным является использование диоксида циркония, стабилизированного 7-8% оксида иттрия.

Наличие стабилизированного диоксида циркония в составе композиционного материала позволяет снизить на 100-150°С величину теплового потока через покрытие и замедлить фазовые превращения, существенно изменяющие начальное состояние системы металлического сплава при температурах более 1050°С.

Включение в состав композиционного материала в качестве связующего алюмогеля приводит к дополнительному образованию микропор в рабочем слое покрытия, что способствует повышению истираемости рабочего слоя. Наличие алюмогеля обеспечивает компактирование исходного порошка, включающего ZrO2 и BN в гранулы, а также сводит к минимуму потери нитрида бора в процессе приготовления и напыления материала. Оптимальным является содержание алюмогеля в композиционном материале 3-6%.

При содержании в композиционном материале алюмогеля менее 3% не происходит гранулирование порошка и связывание нитрида бора, что приводит к потере последнего в получаемом покрытии. А при содержании в композиционном материале алюмогеля более 6% формируется рыхлый рабочий слой из-за низкой (плохой) проплавляемости крупногранульной фракции порошка.

Предложенный композиционный материал может быть нанесен (в отличие от прототипа) высокотехнологичным и широко распространенным методом высокотемпературного газотермического распыления, например, плазменным напылением. Оптимальным является использование предложенного композиционного материала, представляющего собой гранулированный порошок с наличием в нем основной фракции с частицами 20-100 мкм округлой формы, составляющими не менее 70% от общей массы композиционного материала.

Пример. Необходимо было получить термобарьерное уплотнительное покрытие на деталях из никелевого сплава ЭП648 - проставках, используемых в качестве радиального уплотнения зазора между торцами пера рабочих лопаток колеса ротора и статором турбины.

Первый этап включал приготовление композиционного материала для уплотнительного покрытия. Сначала произвели смешивание в шнековом смесителе порошков гексагонального нитрида бора, стабилизированного диоксида циркония, алюмогеля в течение 2-4 часов до получения однородной пластичной массы (пасты) при следующем соотношении компонентов, мас.%:

гексагональный нитрид бора 10
алюмогель 5
стабилизированный диоксид циркония системы ZrO2-7% Y2O3 85

Далее из полученной пасты изготовили керамические стержни на испытательном прессе. Произвели естественную сушку, прокаливание и измельчение стержней. По этой технологии был получен порошок с основной фракцией от 20 до 100 мкм с содержанием частиц округлой формы не менее 70%.

Второй этап включал подготовку деталей (проставок) для последующего нанесения на них уплотнительного покрытия. Произвели обезжиривание покрываемых поверхностей нефрасом, пескоструйную обработку (обдувку электрокорундом) покрываемых поверхностей и дальнейшую сборку проставок в технологическом приспособлении кольцевого типа.

Третий этап включал плазменное напыление рабочего слоя толщиной 2,0 мм.

Последний этап включал механическую обработку проставок в сборочном приспособлении.

Детали с полученным термобарьерным уплотнительным покрытием подвергли испытаниям на термостойкость на газодинамическом стенде путем нагрева до температуры 1050°С за 10 сек, выдержки в течение 10 сек и охлаждения до температуры 300°С в течение 10 сек, а затем в составе энергетической силовой парогазовой установки (ПТУ).

Испытания проставок с уплотнительным покрытием, полученным из заявленных компонетов, показали, что благодаря их использованию ресурс работы турбины ГТД и ее КПД увеличился в 1,5-1,7 раза по сравнению с использованием проставок с сотами, полученными электроэрозионной обработкой и с уплотнительным покрытием, полученным известными способами.

Также положительным результатом испытаний стало то, что уплотнение проточного тракта при соотношении линейного износа лопатки к уплотнительному материалу составило 1:3. Принято, что за единицу принимают износ лопатки. Нормальное соотношение износов лопатки к уплотнительному материалу для компрессора составляет от 1:2 до 1:6. Реально известные серийные уплотнительные материалы, например, марок «20Б» и «КНА» в интервале температур от 500 до 800°С имеют соотношение износов от 1:2 до 1:4 и от 1:2 до 1:3 соответственно.

Таким образом, использование предложенного композиционного материала обеспечивает высокую технологичность нанесения покрытия, повышение его качества за счет улучшения прирабатываемости в интервале температур 1000°С и более, а также повышение эффективности работы уплотнения в целом, что сводит к минимуму износ дорогостоящих частей ГТД.

Класс B22F1/00 Специальная обработка металлических порошков, например для облегчения обработки, для улучшения свойств; металлические порошки как таковые, например смеси порошков различного состава

способ изготовления скользящих контактов -  патент 2529605 (27.09.2014)
композиция, улучшающая обрабатываемость резанием -  патент 2529128 (27.09.2014)
способ подготовки шихты порошковой проволоки и устройство для определения угла естественного откоса порошковых материалов -  патент 2528564 (20.09.2014)
способ приготовления твердосплавной шихты с упрочняющими частицами наноразмера -  патент 2525192 (10.08.2014)
способ получения диффузионно-легированного порошка железа или порошка на основе железа, диффузионно-легированный порошок, композиция, включающая диффузионно-легированный порошок, и прессованная и спеченная деталь, изготовленная из упомянутой композиции -  патент 2524510 (27.07.2014)
способ получения многослойного композита на основе ниобия и алюминия с использованием комбинированной механической обработки -  патент 2521945 (10.07.2014)
способ получения модифицированных наночастиц железа -  патент 2513332 (20.04.2014)
способ получения дисперсноупрочненной высокоазотистой аустенитной порошковой стали с нанокристаллической структурой -  патент 2513058 (20.04.2014)
порошковая ферромагнитная композиция и способ ее получения -  патент 2510993 (10.04.2014)
смазка для композиций порошковой металлургии -  патент 2510707 (10.04.2014)

Класс C23C4/10 оксиды, бориды, карбиды, нитриды, силициды или их смеси

сплав на основе никеля для нанесения износо- и коррозионностойких покрытий микроплазменным или холодным сверхзвуковым напылением -  патент 2527543 (10.09.2014)
нанокомпозит на основе никель-хром-молибден -  патент 2525878 (20.08.2014)
способ электровзрывного напыления композиционных износостойких покрытий системы tic-mo на поверхности трения -  патент 2518037 (10.06.2014)
корундовая микропленка и способ ее получения /варианты/ -  патент 2516823 (20.05.2014)
способ нанесения теплозащитного электропроводящего покрытия на углеродные волокна и ткани -  патент 2511146 (10.04.2014)
способ диспергирования наноразмерного порошка диоксида кремния ультразвуком -  патент 2508963 (10.03.2014)
способ получения покрытия нитрида титана -  патент 2506344 (10.02.2014)
способ получения эрозионностойких теплозащитных покрытий -  патент 2499078 (20.11.2013)
композиционные материалы для смачиваемых катодов и их использование при производстве алюминия -  патент 2487956 (20.07.2013)
блок цилиндров и газотермический способ напыления покрытия -  патент 2483139 (27.05.2013)
Наверх