способ образования литых электроконтактных пробок

Классы МПК:C25C7/02 электроды; соединения для них
C25C3/12 аноды
Автор(ы):, , , , ,
Патентообладатель(и):Государственное образовательное учреждение высшего профессионального образования Самарский государственный аэрокосмический университет имени академика С.П. Королева (СГАУ) (RU),
Общество с ограниченной ответственностью "Научно-техническая фирма "Заряд" (ООО "НТФ "Заряд") (RU)
Приоритеты:
подача заявки:
2008-07-08
публикация патента:

Изобретение относится к цветной металлургии, в частности способу создания анодных и катодных узлов магниевых и алюминиевых электролизеров. Способ включает заливку расплавленного металла в предварительно подготовленные отверстия в углеродистом аноде, при этом на расплавленный металл воздействуют импульсным магнитным полем в процессе кристаллизации металла для обеспечения его принудительного заполнения в отверстия углеродистого анода. Обеспечивается улучшение контакта между пробкой и углеродистым материалом и снижение трудоемкости и энергозатрат. 1 з.п. ф-лы, 1 ил., 1 табл. способ образования литых электроконтактных пробок, патент № 2385976

способ образования литых электроконтактных пробок, патент № 2385976

Формула изобретения

1. Способ создания анодных и катодных узлов магниевых и алюминиевых электролизеров, включающий образование литых электроконтактных пробок путем заливки расплавленного металла в предварительно подготовленные отверстия в углеродистом материале, отличающийся тем, что на расплавленный металл воздействуют импульсным магнитным полем с обеспечением принудительного заполнения отверстий углеродистого материала расплавом металла.

2. Способ по п.1, отличающийся тем, что для более плотного соединения на расплавленный металл воздействуют магнитным полем многократно в процессе кристаллизации металла.

Описание изобретения к патенту

Изобретение относится к цветной металлургии и может быть использовано, например, при разработке и создании анодных и катодных узлов магниевых и алюминиевых электролизеров.

Известен способ соединения металлов с электродными материалами на основе углерода (Плазменно-дуговая сварка углеродных материалов с металлами, В.И.Лакомский, М.А.Фридман, Киев, Экотехнология, 2004 г. стр.196). В этом способе в теле электрода из материала на основе углерода выполняется ряд электроконтактных пробок путем расплавления за счет тепла плазменной дуги металла и его заливки в каждое из предварительно выполненных отверстий с последующей установкой в отверстия токопроводящего материала для соединения с шиной.

Недостатком такого способа являются значительные энергозатраты и трудоемкость изготовления.

Наиболее близким по технической сущности к заявленному является способ монтажа устройства для подвода тока к анодам магниевого элетролизера (патент № 2273684, МПК С25С 7/02, опубл. 10.04.2006 г), включающий установку в массив углеродистого анодного блока компенсаторов с помощью электроконтактных пробок из расплавленного электропроводного материала. При этом предварительно в верхней части торца углерородистого анодного блока выполняют отверстия, разогревают вверх блока до температуры 900-1000°С, в каждое отверстие заливают расплавленный электропроводный материал, устанавливают в него пучок компенсаторов, охлаждают блок с образованием в нем электроконтактной пробки.

Недостатком данного способа также являются значительные энергозатраты, трудоемкость процесса и отсутствие полного контакта металла с углеродистым материалом из-за возникновения зазора между электроконтактной пробкой и углеродистым материалом.

В основу изобретения поставлена задача улучшения электрического контакта между электроконтактной пробкой и углеродистым материалом анода при снижении трудоемкости и энергозатрат.

Данная задача решается за счет того, что в способе создания анодных и катодных узлов магниевых и алюминиевых электролизеров, включающем образование литых электроконтактных пробок путем заливки расплавленного металла в предварительно подготовленные отверстия в углеродистом материале, согласно изобретению на расплавленный металл воздействуют импульсным магнитным полем с обеспечением принудительного заполнения отверстий углеродистого материала расплавом металла.

Для более плотного соединения на расплавленный металл воздействуют магнитным полем многократно в процессе кристаллизации металла.

На чертеже представлена схема воздействия на расплавленный металл.

В углеродистом аноде 1 выполнены отверстия 2. Стержень 1 размещен в тигеле 3, залитом жидким металлом 4. Тигель размещен в индукторе 5.

Пример конкретного выполнения

Образец помещают в тигель 3 с расплавленным алюминием. Предварительно в образце просверлены отверстия 2 диаметром 7 мм. Тигель 3 располагают в индуктор 5, подключенный к магнитно-импульсной установке (не показана). При 3-х кратном силовом воздействии при W=1,5 кДж происходит полное заполнение пробок жидким металлом. После кристаллизации и остывания из-за температурных напряжений в металле обеспечен полный контакт электроконтактной пробки с углеродистым анодом.

Эксперименты были проведены на образцах с диаметрами отверстий:

3 мм, 5 мм, 7 мм, 10 мм.

Результаты представлены в таблице.

Как видно из экспериментов, в результате воздействия на жидкий металл импульсным магнитным полем улучшается заполнение полостей и пор в углеродистом аноде. Это позволяет выполнить полости различной конфигурации и получить более плотное соединение между металлом и углеродистым материалом. Кроме того, воздействие импульсного магнитного поля улучшает физико-механические свойства расплавленного металла и предотвращает появление литейных дефектов. В процессе кристаллизации жидкого металла для компенсации литейной усадки и улучшения вдавливания металла в поры углеродистого материала анода электромагнитными импульсами воздействуют многократно.

Заполняемость каналов в образце, %
Режим обработки Диаметр канала в образце, мм Канал для отвода воздуха
35 710
Без обработки 020 30100 20
1 кДж 3 4050 10050
3 кДж 5100 100100 80

Класс C25C7/02 электроды; соединения для них

электрохимический реактор типа фильтр-пресс для извлечения золота (au) и серебра (ag) в виде порошка -  патент 2516304 (20.05.2014)
катод электролизера для получения металлических порошков -  патент 2483143 (27.05.2013)
углеродный электрод сравнения -  патент 2440443 (20.01.2012)
способ изготовления катода для электролитического получения меди -  патент 2439207 (10.01.2012)
способ изготовления анода среднетемпературного электролизера для производства фтора -  патент 2431701 (20.10.2011)
анодная ячейка для электровыделения цветных металлов -  патент 2353712 (27.04.2009)
катод для получения меди -  патент 2346087 (10.02.2009)
устройство для формирования и перемещения пакетов изделий в форме брусьев с технологическими отверстиями -  патент 2345179 (27.01.2009)
соединенные спеканием непосредственные штыревые соединения для инертных анодов -  патент 2342223 (27.12.2008)
электрод для электрохимического извлечения металлов из растворов их солей -  патент 2340708 (10.12.2008)

Класс C25C3/12 аноды

Наверх