способ сорбции и хранения гелия или водорода

Классы МПК:C01B3/00 Водород; газовые смеси, содержащие водород; выделение водорода из смесей, содержащих его; очистка водорода
F17C11/00 Применение в сосудах растворителей или поглотителей газов
Автор(ы):, ,
Патентообладатель(и):Чабак Александр Федорович (RU),
Прокопьев Иван Прокопьевич (RU),
Якунин Геннадий Николаевич (RU)
Приоритеты:
подача заявки:
2008-08-22
публикация патента:

Изобретение относится к области химии и может быть использовано в водородной энергетики для хранения и транспортировки водорода или гелия. Сорбцию и хранение гелия или водорода осуществляют путем введения газа под давлением во внутреннюю полость алюмосиликатных микросфер, отфлотированных в воде и имеющих среднюю пикнометрическую плотность 0,91-2,2 г/см3. Изобретение позволяет повысить сорбционную способность алюмосиликатных микросфер по отношению к гелию и водороду, возможность ее регулировать. 3 табл.

Формула изобретения

Способ сорбции и хранения гелия или водорода путем введения газа под давлением во внутреннюю полость алюмосиликатных микросфер, отличающийся тем, что используют микросферы, отфлотированные в воде со средней пикнометрической плотностью 0,91-2,2 г/см 3.

Описание изобретения к патенту

Изобретение относится к области выделения гелия из природного газа и может быть использовано в водородной энергетике для хранения и транспортировки водорода.

В настоящее время основным способом сорбции (выделения) гелия из природного газа является криогенный способ, при котором производится конденсация углеводородных фракций. Для получения даже незначительного количества гелия при содержании его от 0.2% до 2% требуется сжижение большого количества природного газа, что делает указанные технологии весьма энергоемкими («Способ выделения водорода или гелия из газовых смесей и установка для его осуществления», патент РФ № 2071019, патентообладатель Санкт-Петербургский технологический институт холодильной промышленности, опубл. 27.12.2006 г.).

В качестве прототипа выбран известный в технике способ выделения гелия из природного газа, (который, как указывают авторы, применим и для водорода), при котором используют полые алюмосиликатные микросферы (ценосферы), выделенные из золы-уноса тепловых электростанций, работающих на каменном угле.

Микросферы вместе с цеолитом послойно помещают в колонку, через которую под давлением пропускают природный газ (стенка микросферы проницаема для гелия и водорода), микросферы имеют стенку, проницаемую для гелия и водорода, имеющих малый размер молекул - 0.2 нанометра. В результате этого слой микросфер сорбирует гелий, который под давлением находится во внутренней полости микросферы, т. е. фактически получают материал, в котором гелий может быть сохранен и при необходимости выделен тем или иным способом (например, нагревом микросфер).

Одновременно цеолит в колонке осушает подаваемый природный газ (журнал «Наука в Сибири», № 20-21 за 2004 г, статья «Гелиевый завод на газовом промысле»).

Недостатком данного способа является малая сорбционная способность микросфер, т. к. необходимо скорректировать время прохождения газа через колонку, т. е. одновременно насытить микросферы гелием и осушить газ на цеолите. Фактически сорбционная способность микросфер является нерегулируемой и зависит только от физической природы микросфер.

Задачей настоящего изобретения является создание способа, который обеспечивает повышение сорбционной способности по отношению к гелию и водороду и ее регулирование, т.е. повышает проницаемость стенки, исключив неконтролируемое воздействие кислот, щелочей и т.п.

Для решения поставленной задачи в известном способе сорбции и хранении гелия и водорода путем введения газа под давлением во внутреннюю полость алюмосиликатных микросфер согласно изобретению используют микросферы, отфлотированные в воде со средней пикнометрической плотностью 0,91-2.2 г/см3. Под средней пикнометрической плотностью следует понимать среднюю плотность частиц навески микросфер, например 10 гр., измеренную на гелиевом пикнометре любой известной марки, например АссиРус 1330, принцип действия которого основан на том, что навеску микросфер помещают в калиброванную камеру, наполненную гелием, молекулы гелия проникают в самые мельчайшие поры микросфер.

Если в стенках микросфер отсутствуют поры размером больше размера молекул гелия, то прибор покажет истинную среднюю плотность навески (совпадающую с общепринятой плотностью, измеренной по объемному вытеснению), например

0,7 г/см3. В случае если стенки имеют поры размером больше размера молекулы гелия, то гелий проникает во внутреннюю полость микросфер; при этом прибор показывает большее значение истинной плотности в зависимости от количества микросфер, имеющих такие поры.

Если все микросферы, входящие в навеску, имеют в стенке поры больше размера молекулы гелия, то в этом случае прибор покажет истинную плотность твердой фазы, т.е. плотность материала стенки - для алюмосиликатного стекла она составит 2.2 г/см3.

С другой стороны, согласно изобретению микросферы должны удовлетворять дополнительному требованию - флотации в воде, что означает, что молекулы воды, имеющие размер 0.3 нм, не проникают через стенки микросфер во внутренние полости, т.е. вода и все газы (например, метан) с размером молекул, равным или более размера молекулы воды, не проникают во внутреннюю полость микросфер.

Таким образом, имеется эффект избирательной сорбции гелия и водорода через поры, равные или больше размера молекулы гелия (водорода) и меньше размера молекулы воды. Степень сорбции, т.е. скорость проникновения гелия во внутреннюю полость микросферы, имеющей вышеназванные поры, значительно превышает скорость проникновения микросфер с беспористой стенкой за счет изменения количества микросфер в навеске, имеющих поры размером больше размера молекулы гелия, а значит, и пикнометрическую плотность более 0.91 г/см 3; степень сорбции можно менять.

Поскольку микросферы в мире широко используются в качестве наполнителя для различных материалов, к ним предъявляются требования к отсутствию дефектов в стенке (пор, трещин и т.д.), что также определяют пикнометром.

При наличии таких дефектов микросферы признаются бракованными. Такие дефекты могут появляться при технологической обработке микросфер, в частности при сушке, например при повышенном перепаде температур сырья и сушильной камеры. Таким образом, задача сводится к отбору требуемых микросфер при наличии дефектов в стенке при помощи флотационной камеры и пикнометра.

Все приведенные доводы относительно сорбции гелия относятся и к водороду, т.к. они, практически имеют одинаковый размер молекул.

Пример осуществления способа.

Пример 1

В колонку длиной 1 метр и диаметром 4 см засыпались 650 г микросфер, выделенных из золы-уноса Аргаяшской ТЭЦ.

Через колонку пропускали природный газ под давлением 15 атм. при комнатной температуре.

Через 15 минут измеряли содержание гелия, сорбированного микросферами. Использовали четыре типа микросфер:

- микросферы с пикнометрической плотностью навески, равной 0.79 г/см3,

- микросферы со средней пикнометрической плотностью 0.91 г/см 3,

- микросферы со средней пикнометрической плотностью 1,4 г/см3,

- микросферы со средней пикнометрической плотностью 2.2 г/см3.

Все микросферы флотировались в воде, т.е. всплывали на поверхность при флотации.

Содержание гелия измеряли путем взвешивания микросфер, засыпанных в колонку. Результаты измерения сведены в таблицу 1.

Таблица 1
Тип микросферСодержание гелия в граммах
13,5
2 4,9
3 13,3
417,6

Анализ таблицы показывает, что микросферы (тип 2.3.4.) по заявляемому способу имеют повышенную сорбционную способность (содержание гелия) за один и тот же период времени и при одних и тех же условиях.

Пример 2

Для сорбции и хранения водорода полые микросферы должны обладать повышенными прочностными характеристиками.

Из микросфер, выделенных из золы-уноса, повышенной прочностью обладают микросферы, имеющие по химическому составу повышенное содержание окиси алюминия; прочность микросфер увеличивается также с уменьшением их диаметра.

Поэтому для сорбции и хранения водорода были использованы микросферы, выделенные из золы Рефтинской ГРЭС, работающей на Экибастузском угле, размером (диаметром)-0-75 микрон. Эти микросферы имеют прочность 65 МПа.

Характеристики микросфер приведены в таблице 2.

Таблица 2
химический состав размер частиц мкм истинная плотность г/см3 насыпная плотность г/см3 температура плавления толщина стенки мкм
SiO2 - 65% Аl2O3 - 37% Fe 2O3 - 3% 0-750,7-0,85 0,38-0,45 1550°C3-5

Установку для сорбции водорода, представляющую собой толстостенную емкость, заполняли вышеуказанными микросферами 4-х типов:

1 - микросферы со средней пикнометрической плотностью 0.85 г/см3,

2 - микросферы со средней пикнометрической плотностью 0.91 г/см3,

3 - микросферы со средней пикнометрической плотностью 1.5 г/см3,

4 - микросферы со средней пикнометрической плотностью 2.2 г/см 3.

Через емкость с микросферами в течение 15 минут пропускали водород под давлением 60 МПа.

Через 15 минут микросферы пересыпали в тонкостенную емкость для хранения.

Эксперимент проводили при температуре 20°C, при нагреве микросфер до 200°C и при нагреве микросфер до 300°C.

В процессе эксперимента определяли сорбционную способность микросфер как соотношение массы водорода к объему микросфер (водородная плотность) и в % - соотношение массы водорода к общей массе системы хранения (емкость плюс микросферы).

Результаты испытаний приведены в таблице 3.

Таблица 3
тип микросфер температура град. водородная плотность кг/см3 соотношение в % массы водорода к массе системы
давление МПа давление МПа
1020 4060 1020 4060
1 20°C1,2 1,8 2,12,5 6,36,2 5,95,4
200°C 2,83,4 3,94,2 6,56,4 5,95,3
300°C 3,43,7 4,34,8 6,65,7 5,34,9
2 20°C 1,42,0 2,63,3 6,56,4 6,25,9
200°C 1,93,0 4,54,9 6,76,3 6,05,9
300°C 2,53,6 4,95,4 6,96,3 5,85,8
3 20°C 4,35,0 5,76,5 7,27,0 6,85,7
200°C 4,95,9 6,76,9 7,47,3 7,06,8
300°C 5,66,4 6,97,3 7,57,2 7,06,9
4 20°C 4,45,9 6,57,1 7,57,2 6,85,9
200°C 4,86,5 7,38,0 7,67,3 7,16,3
3ОО°C 5,16,9 7.89,3 7,77,0 6,66,0

Анализ таблицы показывает, что способ с использованием предлагаемых микросфер (2, 3, 4) значительно превышает известный по степени сорбции и эффективности хранения.

При хранении гелия и водорода во внутренней полости охлажденных микросфер возможны небольшие утечки газов и в случае, если эти утечки значительны, возможно, например, воспользоваться известной технологией по уплотнению внешней поверхности микросфер гель-зольным методом, разработанным фирмой «Westinghouse Savannan River Co» согласно патенту США № 5965482.

В силу относительно низкой стоимости предлагаемых микросфер (около 300 долларов США за тонну) возможно также извлечение хранимых газов путем механического разрушения оболочки микросферы.

Класс C01B3/00 Водород; газовые смеси, содержащие водород; выделение водорода из смесей, содержащих его; очистка водорода

способ производства железа прямым восстановлением и устройство для его осуществления -  патент 2528525 (20.09.2014)
способ переработки углеводородного газа в стабильные жидкие синтетические нефтепродукты и энергетический комплекс для его осуществления -  патент 2527536 (10.09.2014)
устройство для получения водорода и энергоблок -  патент 2526459 (20.08.2014)
способ получения моторного топлива -  патент 2526040 (20.08.2014)
способ получения синтез-газа -  патент 2525875 (20.08.2014)
способ конверсии метана -  патент 2525124 (10.08.2014)
комплексная установка для переработки газа -  патент 2524720 (10.08.2014)
способ получения водорода -  патент 2524391 (27.07.2014)
устройство для получения синтез-газа -  патент 2523824 (27.07.2014)
свч плазменный конвертор -  патент 2522636 (20.07.2014)

Класс F17C11/00 Применение в сосудах растворителей или поглотителей газов

Наверх