способ диагностики колебаний рабочего колеса турбомашины

Классы МПК:G01M15/14 испытание газотурбинных или реактивных установок
Автор(ы):
Патентообладатель(и):Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения имени П.И. Баранова" (RU)
Приоритеты:
подача заявки:
2008-05-13
публикация патента:

Изобретение предназначено для использования в энергомашиностроении. Изобретение относится к энергомашиностроению и может найти широкое применение при прочностной и аэродинамической доводке осевых турбин и компрессоров, а также при создании систем диагностики турбомашин в авиации и энергомашиностроении. Способ диагностики заключается в том, что в процессе развития аэроупругих колебаний лопаток регистрируют сигнал с датчика измерения радиального зазора, зарегистрированный сигнал датчика преобразуют в частотный спектр, определяют в спектре сигнала частоты и величины двух спектральных составляющих, симметрично расположенных на одинаковом расстоянии относительно частоты следования лопаток, и спектральной составляющей, расположенной на таком же расстоянии от начала координат. По результатам сравнения судят о наличии и виде колебаний, а по разности амплитуд составляющих спектра делают вывод об изменении амплитуды колебаний лопаток рабочего колеса турбомашины. Технический результат изобретения - повышение надежности диагностирования бегущих волн деформаций, которые возникают в колесе при колебаниях лопаток. 4 ил. способ диагностики колебаний рабочего колеса турбомашины, патент № 2374615

способ диагностики колебаний рабочего колеса турбомашины, патент № 2374615 способ диагностики колебаний рабочего колеса турбомашины, патент № 2374615 способ диагностики колебаний рабочего колеса турбомашины, патент № 2374615 способ диагностики колебаний рабочего колеса турбомашины, патент № 2374615

Формула изобретения

Способ диагностики колебаний рабочего колеса турбомашины, заключающийся в регистрации сигнала датчика измерения зазора между рабочими лопатками и статором турбомашины, отличающийся тем, что зарегистрированный сигнал датчика преобразуют в частотный спектр, регистрируют частоты следования лопаток, а в спектре сигнала наблюдают две симметрично равноотстоящие от частоты следования лопаток составляющих спектра, и составляющую спектра, отстоящую на таком же расстоянии от начала координат спектра, сравнивают между собой в процессе развития колебаний величины указанных составляющих спектра и по результатам наблюдения и сравнения судят о направлении движения бегущих по колесу волн деформации и об изменении амплитуды колебаний рабочего колеса турбомашины.

Описание изобретения к патенту

Изобретение относится к энергомашиностроению и может найти широкое применение при прочностной и аэродинамической доводке осевых турбин и компрессоров, а также при создании систем диагностики турбомашин в авиации и энергомашиностроении.

Известен способ диагностики колебаний лопаток рабочего колеса осевой турбомашины, основанный на дискретно-фазовом методе, позволяющий определять деформационное состояние каждой лопатки рабочего колеса турбомашины [1]. Сущность способа заключается в измерении временных интервалов между импульсами корневого и периферийного датчиков, их сопоставлением с геометрическим положением конкретной лопатки в колесе в определенные моменты времени и соответствующей интерпретацией полученных значений.

Недостатком данного способа является необходимость установки корневых датчиков во внутреннем тракте турбомашины. Кроме того, данный способ не позволяет определить направление бегущих по колесу волн деформаций и номера диаметральных форм колебаний, по которым реализуются колебания лопаток.

Наиболее близким к изобретению является способ диагностики колебаний рабочего колеса турбомашины, заключающийся в регистрации сигнала датчика пульсаций потока, преобразовании сигнала в частотный спектр, регистрации частоты следования лопаток и сравнении по величине двух симметрично равноотстоящих от частоты следования лопаток составляющих спектра и по результатам этого сравнения судят о направлении бегущих по колесу волн деформации и об изменении амплитуды колебаний лопаток [2].

Недостатком данного способа являются его узкие функциональные возможности. Способ позволяет определять лишь отклик потока на колебания лопаток в виде бегущих волн деформации. При этом вызванные колебаниями лопаток пульсации потока, которые также реализуются в виде бегущих волн деформации, в турбомашине обычно подвержены явлениям отражения и наложения, вследствие чего величины их амплитуд могут искажаться и приводить к неверному суждению о направлении бегущей волны деформации и об амплитудах колебаний лопаток. Поэтому известный способ диагностики дает надежные результаты только при определенных условиях, когда наблюдаемые составляющие спектра пульсаций потока газа не подвержены явлениям отражения и наложения. Кроме того, в турбомашине, как правило, присутствуют акустические помехи, которые затрудняют поиск диагностических спектральных составляющих.

Технической задачей изобретения является повышение надежности диагностирования бегущих волн деформаций, которые возникают в колесе при колебаниях лопаток, а также амплитуд колебаний лопаток на основе измерения радиального зазора между лопатками и статором рабочего колеса турбомашины.

Технический результат достигается в заявляемом способе диагностики колебаний лопаток рабочего колеса турбомашины, который заключается в регистрации сигнала датчика измерения зазора между рабочими лопатками и статором турбомашины, причем зарегистрированный сигнал датчика измерения зазора преобразуют в частотный спектр, регистрируют частоты следования лопаток, а в спектре сигнала наблюдают две симметрично равноотстоящие от частоты следования лопаток составляющие спектра, и составляющую спектра, отстоящую на таком же расстоянии от начала координат спектра, сравнивают между собой в процессе развития колебаний величины указанных составляющих спектра и по результатам наблюдения и сравнения судят о направлении движения бегущих по колесу волн деформации и об изменении амплитуды колебаний рабочего колеса турбомашины.

Заявляемый способ диагностики колебаний рабочего колеса турбомашины отличается от прототипа тем, что сравнивают между собой в процессе развития колебаний лопаток не величины спектральных составляющих в пульсациях потока, а величины спектральных составляющих в сигналах датчика измерения радиального зазора, характеризующих колебания лопаток с бегущими по колесу волнами деформации, и по результатам сравнения судят о направлении движения указанных волн.

Влияние перечисленных отличительных признаков на достигаемый технический результат подтверждается результатами экспериментов.

В процессе экспериментальных исследований, проведенных на компрессорах авиационных двигателей, наблюдали две составляющие f2 и f3 спектра сигнала с датчика измерения зазора, симметрично равноотстоящие от частоты следования лопаток Nf p, и еще одну спектральную составляющую f1, расположенную на таком же расстоянии от начала координат спектра. При этом установлено, что при флаттере спектральная составляющая f2, находящаяся слева от частоты следования лопаток Nfp, меньше по величине, чем спектральная составляющая f3, находящаяся справа от нее, а на таком же расстоянии от начала координат в спектре присутствует еще одна спектральная составляющая f1. Конкретные значения частот и амплитуд перечисленных спектральных составляющих при флаттере были следующими:

Частоты, Гцf 1f2 f3 Nfp
565,4 2966,84097,6 3522,2
Амплитуды, В 0,0990,326 0,346 1,043

На фиг.1 показан спектр сигнала датчика зазора в отсутствие колебаний лопаток.

На фиг.2 показан спектр сигнала датчика зазора при колебаниях с направлением движения бегущей по колесу волны деформации, соответствующей флаттеру.

На фиг.3 показан спектр сигнала датчика зазора при колебаниях с направлением движения бегущей по колесу волны деформации, соответствующей наличию колебаний от вращающегося срыва.

На фиг.4 схематично показан рабочий вид устройства, реализующего заявляемый способ.

Способ диагностики колебаний рабочего колеса турбомашины осуществляется следующим образом.

При работе турбомашины, ротор которой вращается с частотой f p, сигнал с датчика измерения радиального зазора через усилитель поступает на вход регистратора-анализатора, фиг.4.

В отсутствие аэроупругих колебаний в спектре сигнала на экране регистратора-анализатора наблюдается только частота следования лопаток, равная

Nfp, (фиг.1), где N - количество лопаток в колесе, fp - частота вращения ротора.

В момент возникновения аэроупругих колебаний, фиг.2, 3, возникают бегущие по колесу волны деформации, порождающие фазомодулированные бегущие волны в сигнале датчика радиального зазора. При этом в спектре сигнала датчика зазора для каждой формы колебаний колеса, по которой реализуется флаттер или колебания от вращающегося срыва, наблюдают две спектральные составляющие с частотами f2 и f3, при этом

f2=Nfp-fд, где f д=fл±zfp; z - число волн деформации колеса; fл - частота колебаний лопаток,

и f3=Nfp+fд, симметрично равноотстоящие от частоты следования лопаток Nfp на расстоянии f д, и спектральную составляющую f1=fд , расположенную на таком же расстоянии от начала координат.

Если направление бегущих по колесу волн деформации соответствует вращающемуся срыву, то вначале будет наблюдаться практически одинаковый уровень спектральных составляющих с частотами f2 и f3. По мере увеличения амплитуды колебаний лопаток спектральная составляющая с частотой f2 будет обгонять спектральную составляющую с частотой f3 (фиг.3), и их сравнение между собой даст возможность наблюдателю уверенно судить о том, что направление движения бегущих по колесу волн деформаций противоположно направлению вращения колеса, что соответствует случаю колебаний лопаток от вращающегося срыва.

В том случае, когда направление бегущих по колесу волн деформации соответствует флаттеру, то есть направление волн деформаций совпадает с направлением вращения колеса, то составляющие в спектре с частотами f2 и f3 по мере развития колебаний ведут себя качественно по иному. По мере увеличения амплитуды колебаний лопаток спектральная составляющая с частотой f3 начнет заметно обгонять составляющую с частотой f2, фиг.2, и сравнение их величин между собой даст возможность судить о наличии флаттера лопаток.

Спектральная составляющая с частотой f1=fд=fл±zf p в обоих случаях будет увеличиваться по мере увеличения амплитуды колебаний лопаток.

Таким образом, простым обнаружением в сигнале с датчика измерения радиального зазора трех спектральных составляющих с частотами f1, f 2 и f3, связанных между собой известными соотношениями, можно сделать однозначный вывод о возникновении аэроупругих колебаний с бегущими по колесу волнами деформаций, о направлении движения указанных волн и следовательно определить вид развивающихся колебаний.

Изменение разности величин составляющих спектра на частотах f2 и f3, а также изменение величины спектральной составляющей на частоте f1 позволяет судить об изменении амплитуды колебаний лопаток колеса в данный момент времени по сравнению с амплитудой в момент возникновения аэроупругих колебаний.

Источники информации

1. Заблоцкий И.Е., Коростелев Ю.А., Шипов Р.А. Бесконтактные измерения колебаний лопаток турбомашин. М., Машиностроение, 1977, стр.23-27.

2. Патент РФ № 2111469, G01M 15/00, F01D 25/04, от 11.04.1997 г. «Способ диагностики колебаний рабочего колеса турбомашины».

Класс G01M15/14 испытание газотурбинных или реактивных установок

установка для определения окислительной стойкости углерод-углеродного композиционного материала -  патент 2529749 (27.09.2014)
способ диагностики флаттера лопаток рабочего колеса в составе осевой турбомашины -  патент 2525061 (10.08.2014)
способ испытаний газотурбинного двигателя -  патент 2525057 (10.08.2014)
генератор импульсов давления в акустических полостях камер сгорания и газогенераторов жрд -  патент 2523921 (27.07.2014)
способ определения технического состояния энергетического объекта -  патент 2522275 (10.07.2014)
система сбора данных, контроля и диагностики технического состояния агрегатов привода винтов вертолета и электронный блок -  патент 2519583 (20.06.2014)
способ диагностики технического состояния авиационных газотурбинных двигателей -  патент 2517264 (27.05.2014)
индикатор эрозии крыльчатки турбокомпрессора -  патент 2516755 (20.05.2014)
способ вибродиагностики двухвального газотурбинного двитателя -  патент 2514461 (27.04.2014)
способ диагностики положения направляющих аппаратов осевого компрессора -  патент 2514460 (27.04.2014)
Наверх