композиционные электродные материалы для получения дисперсно-упрочненных наночастицами покрытий

Классы МПК:C23C26/00 Способы покрытия, не предусмотренные в группах  2/00
B82B3/00 Изготовление или обработка наноструктур
C22C1/04 порошковой металлургией
B23H9/00 Обработка специальных металлических объектов или для получения специального эффекта или результата на металлических объектах
Автор(ы):, ,
Патентообладатель(и):Федеральное государственное образовательное учреждение высшего профессионального образования "Государственный технологический университет "Московский институт стали и сплавов" (RU)
Приоритеты:
подача заявки:
2008-07-25
публикация патента:

Изобретение относится к обработке поверхности металлов и сплавов, а именно к композиционным электродным материалам для получения дисперсно-упроченных наночастицами покрытий. Изобретение может быть использовано при упрочнении инструментов и деталей машин, в том числе авиационно-космического назначения. Композиционный материал состоит из наноструктурного сплава карбид вольфрама-кобальт, в котором содержание кобальта составляет 3-25% (вес.). Размер зерна карбида вольфрама составляет от 2 до 120 нм, а остаточная пористость - 8-40%. Сплав получен из шихты, в которую дополнительно введен ингибитор роста зерен карбида вольфрама в количестве не более 1% (вес.) с размером зерна от 2 до 150 нм. Материал изготавливают путем спекания или горячего прессования шихты. В качестве ингибиторов могут быть использованы порошки ТаС, VC, Cr3C 2, NbC. Технический результат - улучшение эксплуатационных свойств металлических поверхностей деталей, работающих под нагрузкой в экстремальных условиях эксплуатации, повышение сплошности, износостойкости, жаростойкости, микротвердости, модуля Юнга, снижение шероховатости и коэффициента трения поверхности. 1 з.п. ф-лы, 3 табл.

Формула изобретения

1. Композиционный материал для электрода, используемого для получения дисперсно-упрочненного наночастицами покрытия, состоящий из наноструктурного сплава карбид вольфрама - кобальт, в котором содержание кобальта составляет 3-25 вес.%, размер зерна карбида вольфрама составляет от 2 до 120 нм, а остаточная пористость - 8-40%, при этом в наноструктурный сплав дополнительно введен ингибитор роста зерен карбида вольфрама в количестве не более 1 вес.% с размером зерна от 2 до 150 нм в виде, по крайней мере, порошка одного из следующих соединений: ТаС, VC, Cr3 C2, NbC.

2. Материал по п.1, который изготовлен путем спекания или горячего прессования.

Описание изобретения к патенту

Изобретение относится к обработке поверхности металлов и их сплавов, работающих под нагрузкой в экстремальных условиях эксплуатации, и может быть использовано при упрочнении инструментов и деталей машин, в том числе авиационно-космического назначения.

Известен композиционный электрод, предназначенный для обработки поверхности электрическим разрядом (RU 2294397, опублик. 2007.02.27), представляющий собой необожженную прессовку, изготовленную путем формования порошков. Импульсный электрический разряд генерируют между электродом и металлической основой изделия в диэлектрической жидкости для формирования на поверхности изделия нанопокрытия из материала электрода или из вещества, которое образуется в результате реакции электрода под действием энергии электрического разряда, при этом электрод содержит не меньше 40 об.% металлического материала.

Недостатком известного способа является применение в качестве электрода необожженных прессовок, сложность проведения процесса из-за использования диэлектрической жидкости, ограниченность в применении составов электродных материалов для получения толстослойных покрытий, потребность в использовании вакуумных печей для выжигания воска из прессовок.

Из-за применения в электродном материале кобальта больше 50 об.% покрытия имеют низкие износо-, жаростойкость и высокий К тр, что не позволяет их использовать на деталях, работающих под нагрузкой в экстремальных условиях эксплуатации.

Известен композиционный электрод для получения нанопокрытия (JP 3227454, опублик. 12.11.2001), состоящий из смеси порошка карбида вольфрама WC и порошка кобальта Со. Необожженная прессовка может быть получена путем простого смешивания порошка WC с порошком Со и прессования; при этом при добавлении к порошкам воска прессование необожженной прессовки выполняется проще и более эффективно.

Недостатком известного электрода является то, что спекание выполняется в интервале температур от 400°С до 1100°С. Получаемый электрод имеет недостаточную механическую прочность, что в условиях электроискровой обработки может приводить либо к повышенной эрозии материала, либо к его механическому разрушению. Формируемые покрытия характеризуются низкой сплошностью и высокой шероховатостью. Кроме этого, получаемый композиционный материал не имеет нанодисперсной структуры, т.к. используемые микронные порошки карбида вольфрама и кобальта.

Наиболее близким к предложенному изобретению является композиционный электрод, используемый для получения дисперсно-упрочненного наночастицами покрытия (WO/2008/014801, опублик. 07.02.2008), состоящий из наноструктурного сплава карбид вольфрама-кобальт. Содержание кобальта составляет 3-25% (вес.), размер зерна карбида вольфрама составляет от 2 до 120 нм, а остаточная пористость - 8-40%. Наноструктурный сплав изготовлен путем спекания или горячего прессования.

Недостатком известного композиционного электрода является то, что сформированные с его помощью покрытия характеризуются недостаточно высокими значениями сплошности, шероховатости, износо- и жаростойкости, а также относительно высокими значениями К тр при повышенных нагрузках на пару трения. Это не позволяет использовать такие покрытия на деталях, работающих под нагрузкой в экстремальных условиях эксплуатации.

Технический результат, достигаемый в предложенном изобретении, заключается в обеспечении получения с помощью композиционного электрода многофункциональных покрытий с высокими эксплуатационными свойствами на металлических поверхностях, работающих под нагрузкой в экстремальных условиях эксплуатации, с повышенными сплошностью, износостойкостью, жаростойкостью, микротвердостью, модулем Юнга и меньшей шероховатостью, а также с меньшим и более стабильным коэффициентом трения.

Указанный технический результат достигается следующим образом.

Материал композиционного электрода, используемого для получения дисперсно-упрочненного наночастицами покрытия, состоит из наноструктурного сплава карбид вольфрама-кобальт, в котором содержание кобальта составляет 3-25% (вес.), размер зерна карбида вольфрама составляет от 2 до 120 нм, а остаточная пористость - 8-40%. Наноструктурный сплав изготовлен из шихты, в которую дополнительно вводят ингибитор спекания в количестве не более 1% (вес.) с размером зерна от 2 до 150 нм. При этом наноструктурный сплав изготовлен путем спекания или горячего прессования шихты.

В качестве ингибитора используют порошок, по крайней мере, одного из следующих соединений: ТаС, VC, Сr3Сr2, NbC.

В современном материаловедении одним из перспективных направлений повышения свойств сплавов является модифицирование его структуры. Особенный интерес представляет применение материалов с нанокристаллической структурой. Такие материалы состава WC-Co обладают рядом преимуществ по свойствам (твердость, прочность, износостойкость, вязкость) по сравнению со стандартными одноименными материалами с микрокристаллической структурой. Использование нанодисперсных порошков WC-Co в технологиях газотермического и плазменного напыления способствует повышению свойств формируемых покрытий (растет прочность на изгиб, твердость, и трибологические свойства) по сравнению с покрытиями из микропорошков.

Для предотвращения роста зерен карбида вольфрама при спекании в исходную шихту дополнительно вводят ингибитор в количестве не более 1% с размером зерна от 2 до 150 нм.

В системе WC-Co твердый сплав формируется в результате спекания с участием жидкой фазы, образующейся на основе легкоплавкой эвтектики.

После появления жидкой фазы происходит перемещение зерен карбида вольфрама, вызываемое силами поверхностного натяжения жидкости. Помимо этого большую роль в процессе усадки играет растворимость твердой составляющей в расплаве, облегчающая проникновение жидкости между твердыми частицами. В дальнейшем происходит окончательное формирование структуры сплава. Движущейся силой спекания является уменьшение поверхностной энергии границ карбидных фаз путем образования дополнительных межкристаллитных перешеек и межфазовых поверхностей с общей минимальной свободной энергией. При этом наблюдается увеличение среднего размера зерна WC.

Введение в шихту ингибиторов, равномерно распределенных между частицами карбида вольфрама, препятствует росту зерен WC. Данный эффект связан с тем, что в присутствии ингибитора снижается скорость растворения и перекристаллизации через расплав зерен карбида вольфрама. При этом рост зерен карбида вольфрама замедляется.

В качестве ингибиторов используют порошок по крайней мере одного из следующих соединений: ТаС и/или VC, и/или Сr 3Сr, и/или NbC. Данные термодинамически стабильные тугоплавкие соединения, имеющие по сравнению с WC высокий химический потенциал, взаимодействуют с WC с образованием более устойчивых твердых растворов. Выбор данных соединений связан с тем, что они имеют удовлетворительную смачиваемость расплавом кобальта (краевой угол смачивания меньше 25°), а также повышают твердость сплава и снижают его вязкость. Введение ингибиторов позволяет упростить технологическую стадию спекания и получить наноструктурированный твердый сплав.

Применение композиционного электрода из наноструктурированного сплава карбид вольфрама-кобальт, используемого для получения дисперсно-упрочненного наночастицами покрытия, с содержанием кобальта меньше 3% (вес.) из-за низкой эрозии материала не позволяет получать покрытия с высокой сплошностью и толщиной из-за наличия дефектов в поверхностном слое в виде пор и трещин. В таком покрытии образуются высокие напряжения, что снижает физико-механические и эксплуатационные свойства.

Использование композиционного электрода с содержанием кобальта выше 25% (вес.) приводит к уменьшению толщины, твердости, модуля упругости, износостойкости и жаростойкости покрытий, а также к повышению их коэффициента трения и шероховатости.

При электроискровой обработке композиционным электродом из наноструктурированного твердого сплава карбид вольфрама-кобальт с размером зерна карбида вольфрама меньше 2 нм на поверхности металлической подложки формируются покрытия с высокой дефектностью в виде трещин и пор, имеющие низкую сплошность и низкие физико-механические и эксплуатационные свойства.

Покрытия, осаждаемые при использовании композиционного электрода с размером частиц WC выше 120 нм, имеют высокую шероховатость, высокий и нестабильный коэффициент трения, а также низкие значения сплошности, микротвердости, износостойкости и жаростойкости.

Введение в состав шихты WC-Co порошков-ингибиторов в количестве более 1% не способствует получению материала с однородной наноструктурой и высокими механическими свойствами (прочность на изгиб, прочность на сжатие). При температуре спекания (1320-1440°С) происходит взаимодействие порошка ингибитора с карбидом вольфрама и кобальта с образованием нежелательных фаз и твердых растворов, наличие которых в составе композиционного электрода не способствует получению многофункциональных покрытий с высокими эксплуатационными свойствами (сплошность, износостойкость, жаростойкость, шероховатость, более стабильный и низкий коэффициент трения).

Применение порошков ингибитора с размером зерна менее 2 нм не позволяет достичь равномерного его распределения в шихте в результате конгломерации. При спекании происходит рост зерен ингибитора, вследствие чего материал имеет неоднородную структуру.

Применение порошков ингибитора с размером зерна более 150 нм также не позволяет получить композиционный электродный материал с однородной структурой, а формируемые на металлических подложках покрытия имеют недостаточно высокие свойства.

Пример осуществления изобретения.

Различные варианты осуществления изобретения приведены в таблицах 1, 2 и 3.

Нанесение покрытий осуществлялось на оборудовании для электроискровой обработки марки «Alier-Metal».

Физико-механические и трибологические свойства покрытий определялись с помощью следующих прецизионных приборов: полевого эмиссионного растрового микроскопа JSM-6700F с приставкой для энергодисперсионной спектрометрии (ЭДС) JED-2300F фирмы JEOL; микротвердомера ПМТ-3 (нагрузка 50 Н); нанотвердомера (Nano-Hardness Tester, CSM Instruments); трибометра фирмы «CSM Instruments»; оптических микроскопов "Neophot-32" и "Axiovert 25 СА (Zeiss)"; машины трения СМЦ-1 (Россия) (схема проведения эксперимента вал-колодка при скорости скольжения 1 м/с, нагрузке на пару трения 1 кг; пару трения составляли ЭИЛ-покрытие и алмазосодержащий ролик размером композиционные электродные материалы для получения дисперсно-упрочненных   наночастицами покрытий, патент № 2371520 40×12 мм с алмазом 40/60 мкм, содержанием 50% на связке бронза M1); электропечи СШОЛ 1.1,6/12-М3 (Т=750°С; время 35 ч); оптического профилометра WYKO NT 1100 (Veeco) (определяли параметр Rt - наибольшую высоту профиля).

В таблице 1 приведены варианты осуществления изобретения при следующих значениях режимов проведения электроискровой обработки:

- Р=0.26 Дж;

- f=400 Гц;

- N=20000.

Металлические подложки, на которых были получены дисперсно-упрочненные наночастицами покрытия, выполнены из титанового сплава TiAl6V4 (DIN 17851). В приведенных в таблице вариантах при осаждении покрытий применялся композиционный электрод из наноструктурного сплава 92% WC - 8% Со со средним размером зерна карбида вольфрама 45 нм и варьируемой пористостью от 8 до 40%. При изготовлении композиционных электродов вводился ингибитор по крайней мере одного из следующих соединений ТаС, VC, Cr 3C2, NbC, в количестве от 0 до 10% и размером частиц 1-200 нм.

При содержании в композиционном электроде ингибитора с размером частиц 2-150 нм в количестве менее 1% на подложках из титанового сплава формируются многофункциональные покрытия с высокими эксплуатационными свойствами, способные работать под нагрузкой в экстремальных условиях эксплуатации (повышенные сплошность, износостойкость и жаростойкость, микротвердость, модуль Юнга, низкая шероховатость, а также более стабильный и низкий коэффициент трения).

При невыполнении заданных условий сформировать высококачественные покрытия не удается.

В таблице 2 приведены варианты осуществления изобретения при проведении электроискровой обработки поверхности металлических подложек из никелевого сплава NiMo16Cr16Ti (DIN 17444) при следующих условиях:

- Р=0.3 Дж;

- f=1300 Гц;

- N=70 000.

В приведенных в таблице вариантах при обработке применялся композиционный электрод, выполненный из наноструктурного твердого сплава 92%WC - 8%Со со средним размером зерна карбида вольфрама 1-130 нм, варьируемой пористостью 7-45%. При изготовлении композиционных электродов вводился ингибитор VC в количестве 1% с размером частиц 100 нм.

Применение композиционного электрода с размером частиц карбида вольфрама 2-120 нм и пористостью 8-40% для осаждения покрытий позволяет получить многофункциональные покрытия с высокими эксплуатационными свойствами, способные работать под нагрузкой в экстремальных условиях эксплуатации (повышенные сплошность, износостойкость и жаростойкость, микротвердость, модуль Юнга, низкая шероховатость, а также низкий коэффициент трения).

При невыполнении заданных условий сформировать высококачественные покрытия не удается.

В таблице 3 приведены варианты осуществления изобретения при проведении электроискровой обработки поверхности металлических подложек из стали марки 100 Cr2 (DIN EN ISO 683-17) композиционным электродом для получения дисперсно-упрочненного наночастицами покрытия.

Условия проведения обработки:

- Р=0.01 Дж;

- f=10000 Гц;

- N=100000.

В качестве композиционного электрода использовался материал, состоящий из наноструктурного твердого сплава карбид вольфрама-кобальт с различным содержанием кобальта 2-30% и различной пористостью 8-40%. В композиционные электроды вводился ингибитор Сr3Сr в количестве 1% с размером частиц 80 нм. Размер частиц карбида вольфрама в материалах составлял 70 нм.

При использовании композиционного электрода с содержанием кобальта 3-25% и пористостью 8-40% на подложках из стали марки 100 Cr2 формируются многофункциональные покрытия с высокими эксплуатационными свойствами, которые могут работать под нагрузкой в экстремальных условиях эксплуатации (повышенные сплошность, износостойкость, жаростойкость, микротвердость, модуль Юнга, низкая шероховатость, а также меньший и более стабильный коэффициент трения).

При невыполнении заданных условий качественные покрытия на подложках из стали марки 100 Cr2 не формируются.

Таблица 1
Средний размер зерна WC, нмПорис-

тость, %
Ингибитор Количество ингибитора, вес.%Размер частиц ингибито-ра, нм Сплош-ность, %Тол-щи-

на, мкм
Темп износа, мкм/мин Жаро-стой-

кость, г/м"
Микро-твер-

дость, ГПа
Мо-дуль Юнга, ГПа К трШерохо-ватость Rmax, мкм
145.0 40- -- 9030 2725 9.3420 0.425.6
2 45.015 ТаС+VC+1 4595 3619 1810,4 4300,39 4.0
композиционные электродные материалы для получения дисперсно-упрочненных   наночастицами покрытий, патент № 2371520 композиционные электродные материалы для получения дисперсно-упрочненных   наночастицами покрытий, патент № 2371520 композиционные электродные материалы для получения дисперсно-упрочненных   наночастицами покрытий, патент № 2371520 Cr3 C2+NbC композиционные электродные материалы для получения дисперсно-упрочненных   наночастицами покрытий, патент № 2371520 композиционные электродные материалы для получения дисперсно-упрочненных   наночастицами покрытий, патент № 2371520 композиционные электродные материалы для получения дисперсно-упрочненных   наночастицами покрытий, патент № 2371520 композиционные электродные материалы для получения дисперсно-упрочненных   наночастицами покрытий, патент № 2371520 композиционные электродные материалы для получения дисперсно-упрочненных   наночастицами покрытий, патент № 2371520 композиционные электродные материалы для получения дисперсно-упрочненных   наночастицами покрытий, патент № 2371520 композиционные электродные материалы для получения дисперсно-упрочненных   наночастицами покрытий, патент № 2371520 композиционные электродные материалы для получения дисперсно-упрочненных   наночастицами покрытий, патент № 2371520 композиционные электродные материалы для получения дисперсно-упрочненных   наночастицами покрытий, патент № 2371520 композиционные электродные материалы для получения дисперсно-упрочненных   наночастицами покрытий, патент № 2371520
345.0 17ТаС+NbC 0,8100 10040 1921 14.5470 0.353.8
4 45.08 VC0,2 150100 3225 1512.3 5000.29 5.5
5 45.0 30Cr3 C20,7 2 9538 1517 11.4445 0,405.1
8 45.040 ТаС3 20085 2532 259.0 3600.50 7.0
9 45.0 40Сr3 С2+NbC 101 9020 3030 9.5390 0.468.0

Таблица 2
Средний размер зерна WC, нмПорис-тость, %Сплошность, % Толщина, мкм Темп износа, мкм/мин Жаростой-

кость, г/м2
Микротвер-

дость, ГПа
Модуль Юнга, ГПа К трШерохова-

тость Rmax, мкм
12.0 895 4019 2512.5 5100.55 4.7
2 70.0 3595 3820 2211,2 4800,34 6.5
3 70.0 27100 4022 2712.4 4500.31 4.1
4 70.0 36100 3521 1912.8 5200.24 5.3
5 120.0 4095 3922 1811.7 4450,30 7.3
6 1.0 4575 3032 358.9 3900.62 17.0
7 130.0 780 3529 389.1 4100.69 19.0

Таблица 3
Материал композиционного электрода, вес.% Порис-тость, %Сплош-

ность, %
Толщина, мкмТемп износа, мкм/минЖаро-стой-

кость, г/м2
Микро-твер-

дость, ГПа
Модуль Юнга, ГПа К трШерохо-ва-

тость Rmax, мкм
1(97%WC - 3%Со) наноструктурный 890 4020 2010.3 4900.52 3.3
2 (92%WC - 8%Со) наноструктурный 25 9536 2124 11,1460 0.353.4
3 (90%WC- 10%Co) наноструктурный 3798 4024 2712.5 4700.32 5.5
4 (85%WC- 15%Co) наноструктурный 16 9832 2125 12.9520 0.414.5
5 (75%WC - 25%Со) наноструктурный 40100 3822 2811.4 4450.40 7.1
6 (98%WC - 2%Со) наноструктурный 40 8520 3035 9.1370 0.609.3
7 (70%WC - 30%Со) наноструктурный 4070 1534 359.4 3700.65 10.2

Класс C23C26/00 Способы покрытия, не предусмотренные в группах  2/00

способ упрочнения металлических изделий с получением наноструктурированных поверхностных слоев -  патент 2527511 (10.09.2014)
способ индукционной наплавки твердого сплава на стальную деталь -  патент 2520879 (27.06.2014)
способ получения тонкопленочных полимерных нанокомпозиций для сверхплотной магнитной записи информации -  патент 2520239 (20.06.2014)
покрытие на режущем инструменте, выполненное в виде режущего кромочного элемента, и режущий инструмент, содержащий такое покрытие -  патент 2518856 (10.06.2014)
способ нанесения металлического покрытия на токопередающие поверхности разборных контактных соединений -  патент 2516189 (20.05.2014)
способ упрочнения силовых конструкций -  патент 2516185 (20.05.2014)
способ нанесения антифрикционных покрытий на боковую поверхность рельса -  патент 2510433 (27.03.2014)
способ нанесения металлокерамического покрытия на стальную деталь с использованием электрической дуги косвенного действия -  патент 2510427 (27.03.2014)
способ металлизации древесины -  патент 2509826 (20.03.2014)
способ получения защитно-декоративных покрытий на изделиях из древесины -  патент 2509823 (20.03.2014)

Класс B82B3/00 Изготовление или обработка наноструктур

Класс C22C1/04 порошковой металлургией

способ получения алюминиевого композиционного материала с ультрамелкозернистой структурой -  патент 2529609 (27.09.2014)
способ приготовления твердосплавной шихты с упрочняющими частицами наноразмера -  патент 2525192 (10.08.2014)
порошковый износо- корозионно-стойкий материал на основе железа -  патент 2523648 (20.07.2014)
способ получения многослойного композита на основе ниобия и алюминия с использованием комбинированной механической обработки -  патент 2521945 (10.07.2014)
жаропрочный порошковый сплав на основе никеля, стойкий к сульфидной коррозии и изделие, изготовленное из него -  патент 2516681 (20.05.2014)
способ испытания на сульфидную коррозию жаропрочных порошковых никелевых сплавов -  патент 2516271 (20.05.2014)
способ получения изделий из сложнолегированных порошковых жаропрочных никелевых сплавов -  патент 2516267 (20.05.2014)
способ изготовления порошкового композита сu-cd/nb для электроконтактного применения -  патент 2516236 (20.05.2014)
способ получения порошков сплавов на основе титана, циркония и гафния, легированных элементами ni, cu, ta, w, re, os и ir -  патент 2507034 (20.02.2014)
способы производства нефтепромысловых разлагаемых сплавов и соответствующих продуктов -  патент 2501873 (20.12.2013)

Класс B23H9/00 Обработка специальных металлических объектов или для получения специального эффекта или результата на металлических объектах

технологическая оснастка для локальной электроискровой обработки внутренних поверхностей тел вращения -  патент 2527108 (27.08.2014)
способ электроэрозионного легирования поверхностей стальных деталей -  патент 2524471 (27.07.2014)
способ восстановления и упрочнения стальных рабочих лопаток влажнопаровых ступеней паровой турбины -  патент 2518036 (10.06.2014)
сотовое уплотнение и способ его изготовления -  патент 2515869 (20.05.2014)
способ локального удаления диэлектрических покрытий -  патент 2515604 (20.05.2014)
устройство для электрохимической маркировки внутренней поверхности ствола оружия -  патент 2514763 (10.05.2014)
способ электрохимической обработки лопаток с двумя хвостовиками газотурбинного двигателя и устройство для его осуществления -  патент 2514236 (27.04.2014)
способ восстановления высевающего диска для пневматического высевающего аппарата -  патент 2510318 (27.03.2014)
способ электроэрозионной обработки прецизионных сферических поверхностей -  патент 2507042 (20.02.2014)
устройство для электрохимического удаления заусенцев -  патент 2504461 (20.01.2014)
Наверх