способ извлечения цветных металлов из руд

Классы МПК:C22B23/00 Получение никеля или кобальта
C22B15/00 Получение меди
C22B3/04 выщелачиванием
Автор(ы):, , ,
Патентообладатель(и):Басков Дмитрий Борисович (RU)
Приоритеты:
подача заявки:
2007-06-19
публикация патента:

Изобретение относится к области гидрометаллургии. Способ извлечения цветных металлов из руд включает разделение руды по фракциям, выщелачивание фракций раствором серной кислоты и переработку продуктивного раствора. При этом руду разделяют на фракцию +0,5-2,0 мм и фракцию -0,5 мм. Фракцию +0,5-2,0 мм подвергают кучному выщелачиванию. Фракцию -0,5 мм направляют на измельчение до -0,2 мм и выщелачивают при температуре 70-100°С в слое раствора серной кислоты высотой не менее 5 метров. Реализация способа позволяет повысить степень извлечения металлов. 2 табл.

Формула изобретения

Способ извлечения цветных металлов из руд, включающий разделение руды по фракциям, их выщелачивание раствором серной кислоты и переработку продуктивного раствора, отличающийся тем, что руду разделяют на фракцию +0,5-2,0 мм и фракцию -0,5 мм, фракцию +0,5-2,0 мм подвергают кучному выщелачиванию, а фракцию -0,5 мм направляют на измельчение до -0,2 мм и выщелачивают при температуре 70-100°С в слое раствора серной кислоты высотой не менее 5 м.

Описание изобретения к патенту

Изобретение относится к металлургии, а именно к способам получения цветных металлов.

В качестве прототипа выбран способ извлечения никеля и кобальта путем кучного выщелачивания материала, содержащего низкосортный никель или кобальт (Евразийская заявка № 200600241), включающий разделение материалов, содержащих цветные металлы по фракциям, их выщелачивание и переработку продуктивного раствора.

Недостатком способа является недостаточно высокая степень извлечения металлов.

Задачей, на решение которой направлено заявленное изобретение, является повышение степени извлечения металлов.

Указанная задача решается тем, что в способе извлечения цветных металлов из руд, включающем разделение руды по фракции, их выщелачивание раствором серной кислоты и переработку продуктивного раствора, руду разделяют на фракцию +0,5 - 2,0 мм и фракцию -0,5 мм, фракцию +0,5 - 2,0 мм подвергают кучному выщелачиванию, а фракцию -0,5 мм направляют на измельчение до -0.2 мм и выщелачивают при температуре 70 -100°С в слое раствора серной кислоты высотой не менее 5 метров.

То, что руду разделяют по классу 0,5 - 2,0 мм, после чего фракцию+0,5 - 2,0 мм подвергают кучному выщелачиванию, фракцию - 0,5 - 2,0 мм направляют на выщелачивание при атмосферных условиях, обеспечивает оптимальное разделение руды по классам осуществления кучного и подземного выщелачивания руд цветных металлов, особенно бедных по металлам руд.

Разделение по классу 0,5 мм наиболее эффективно для монолитных руд, по классу +2,0 мм для глинистых комкующихся руд и конгломератов.

Снижение размера разделения до менее 0,5 мм ведет к ухудшению параметров кучного выщелачивания, сокращению объема руды для атмосферного выщелачивания и общему снижению извлечения металла из руды. Увеличение размера разделяемой фракции выше+2,0 мм существенно увеличивает объем руды, в том числе обедненной по цветным металлам, для атмосферного выщелачивания с увеличением расхода кислоты на растворение минеральной составляющей руды, увеличивает расходы на нейтрализацию пульпы и захоронение выщелоченных отходов.

Осуществление выщелачивания при атмосферных условиях и температуре ниже 70°С неэффективно из-за резкого снижения извлечения цветных металлов, а повышение температуры выше 100°С ведет к резкому удорожанию эксплуатационных и амортизационных затрат на эксплуатацию специального оборудования - автоклавов.

Проведение выщелачивания в слое раствора минеральной кислоты высотой менее 5 м ведет к снижению извлечения цветных металлов из руд.

Пример 1. Предлагаемый способ испытан в лабораторных условиях при выщелачивании кернового материала окисленных никелевых руд Кунгурского месторождения.

При общем содержании никеля 0,6% руда содержала в %: Fe 6,2, Mg 18,5, Al 0,6, Ca 1,02, Mn 0,08.

Керновый материал, представляющий магнезиальную руду с включением до 20% железистой окисленной руды, рассеивали по классу 2,0 мм и 0,5 мм (или+0,5 мм), подвергли кучному выщелачиванию в колонне диаметром 0,2 м и высотой 2,0 м раствором серной кислоты концентрации 50 г/л. Полученный с кучного выщелачивания продуктивный раствор с концентрацией, г/л: Ni 1,2, Fe 5,5, Mg 8,0, Ca 0,5, кислотность 4,9 направили на атмосферное выщелачивание руды - 2,0 мм, предварительно измельчив ее до - 0,15 мм.

Эксперимент по атмосферному выщелачиванию вели в аппарате диаметром 0,2 и высотой 5,0 м при температуре 70, 90 100°С раствором серной кислоты 200 г/л в течение 6 часов при Ж:Т=3:1.

Для сравнения, эксперимент осуществляли при 65°С и в аппарате с высотой слоя раствора серной кислоты 200 г/л 4,0 м. В ходе эксперимента по атмосферному выщелачиванию раствор доукрепляли по серной кислоте до 200 г/л.

Кроме того, для сравнения осуществлен эксперимент с рассеянием руды по классу 2,5 мм и классу 0,4 мм. Результаты исследований по сравнению с прототипом, а также при запредельных значениях параметров приведены в табл.1.

Из табл.1 видно, что осуществление выщелачивания никеля по заявленному способу позволяет уменьшить расход серной кислоты, повысить извлечение никеля из руды.

Пример 2. Предлагаемый способ испытан в лабораторных условиях при выщелачивании проб руды медистых песчаников с месторождений Западного Приуралья - Пермского края, Башкортостана, Республики Коми.

Смешанная проба руды содержала в %: меди 1,2, железа 6,5, алюминия 0,6, кальция 0,9, марганца 0,15.

Исходную руду рассеяли по классу +0,5 мм (в ряде опытов 2,0 мм).

Класс +0,5 мм подвергли кучному выщелачиванию в колонне диаметром 0,2 м и высотой 2,0 раствором серной кислоты 30 г/л. Полученный с кучного выщелачивания раствор с концентрацией меди 1,5 г/л и pH 1,5 - 4,0 подкисляли до концентрации и направляли на атмосферное выщелачивание меди в аппарате диаметром 0,2 и высотой 6,0 м при температуре 70, 90, 100°С раствором серной кислоты 100 г/л в течение 5 часов при Ж:Т=5:1. Перед выщелачиванием руду измельчали до - 0,2 мм 100°С. В ходе эксперимента выщелачивающий раствор постоянно доукрепляли до 100 г/л. Разовые эксперименты провели в трубе 0 159 мм высотой 10 и 25 м при постоянном перемешивании жидкой и твердой фаз воздухом и подъеме твердой фазы со дна трубы в ее верхнюю часть.

Для сравнения, проведены опыты при запредельных значениях параметров, а также по прототипу, представленные, как и опыты по заявленному способу, в табл.2.

Из табл.2 видно, что осуществление выщелачивания меди по заявленному способу позволяет увеличить извлечение меди из руды и уменьшить расход серной кислоты.

способ извлечения цветных металлов из руд, патент № 2368678 способ извлечения цветных металлов из руд, патент № 2368678

Класс C22B23/00 Получение никеля или кобальта

способ разделения платины (ii, iv), родия (iii) и никеля (ii) в хлоридных растворах -  патент 2527830 (10.09.2014)
способ получения суперпарамагнитных частиц никеля и суперпарамагнитная порошковая композиция -  патент 2514258 (27.04.2014)
сорбционное извлечение ионов кобальта из кислых хлоридных растворов -  патент 2514242 (27.04.2014)
способ извлечения никеля и кадмия из отработанных щелочных аккумуляторов и батарей -  патент 2506328 (10.02.2014)
способ переработки окисленных руд с получением штейна -  патент 2504590 (20.01.2014)
способ извлечения никеля -  патент 2503731 (10.01.2014)
способ переработки окисленных никелевых руд -  патент 2502811 (27.12.2013)
способ извлечения никеля и кобальта из отвальных конверторных шлаков комбинатов, производящих никель -  патент 2499064 (20.11.2013)
способ переработки никельсодержащих сульфидных материалов -  патент 2495944 (20.10.2013)
способ разделения медно-никелевого файнштейна -  патент 2495145 (10.10.2013)

Класс C22B15/00 Получение меди

способ получения металлической меди и устройство для его осуществления -  патент 2528940 (20.09.2014)
способ переработки медно-ванадиевых отходов процесса очистки тетрахлорида титана -  патент 2528610 (20.09.2014)
способ переработки электронного лома -  патент 2521766 (10.07.2014)
способ переработки сульфидных медно-свинцово-цинковых материалов -  патент 2520292 (20.06.2014)
реагенты для экстрации металлоb, обладающие повышенной стойкостью к деградации -  патент 2518872 (10.06.2014)
способ получения черновой меди непосредственно из медного концентрата -  патент 2510419 (27.03.2014)
способ переработки смешанных медьсодержащих руд с предварительным гравитационным концентрированием и биовыщелачиванием цветных металлов -  патент 2501869 (20.12.2013)
способ разделения медно-никелевого файнштейна -  патент 2495145 (10.10.2013)
способ извлечения меди из растворов -  патент 2493278 (20.09.2013)
способ переработки палладиевых отработанных катализаторов -  патент 2493275 (20.09.2013)

Класс C22B3/04 выщелачиванием

способ извлечения молибдена из техногенных минеральных образований -  патент 2529142 (27.09.2014)
способ переработки сульфидного сырья, содержащего драгоценные металлы -  патент 2528300 (10.09.2014)
способ извлечения рения и платиновых металлов из отработанных катализаторов на носителях из оксида алюминия -  патент 2525022 (10.08.2014)
способ переработки золотосодержащих концентратов двойной упорности -  патент 2514900 (10.05.2014)
способ извлечения дисперсного золота из упорных руд и техногенного минерального сырья -  патент 2509166 (10.03.2014)
способ извлечения молибдена и церия из отработанных железооксидных катализаторов дегидрирования олефиновых и алкилароматических углеводородов -  патент 2504594 (20.01.2014)
комбинированный способ кучного выщелачивания золота из упорных сульфидных руд -  патент 2502814 (27.12.2013)
способ переработки отходов электронной и электротехнической промышленности -  патент 2502813 (27.12.2013)
способ подготовки рудных тел на месте залегания к выщелачиванию полезных компонентов -  патент 2495238 (10.10.2013)
способ определения содержания золота и серебра в сульфидных рудах и продуктах их переработки -  патент 2494160 (27.09.2013)
Наверх