способ переработки побочных продуктов жидкофазного синтеза изопрена из изобутилена и формальдегида

Классы МПК:C07C11/18 изопрен
C07C2/86 конденсацией углеводорода с неуглеводородом
Автор(ы):
Патентообладатель(и):Общество с ограниченной ответственностью "Еврохим-Спб-Трейдинг" (RU)
Приоритеты:
подача заявки:
2008-03-17
публикация патента:

Изобретение относится к способу переработки побочных продуктов жидкофазного синтеза изопрена из изобутилена и формальдегида или формальдегидсодержащих продуктов, в частности 4,4-диметил-1,3-диоксана в интервале температур 400-480°С в присутствии водяного пара на алюмосиликатсодержащем катализаторе с предварительным нагревом побочных продуктов до температуры 400-550°С в присутствии водяного пара, характеризующемуся тем, что процесс проводят при начальной температуре на 5-40°С ниже и конечной температуре на 5-40°С выше средней температуры контактирования при постепенном повышении температуры от начальной до конечной и при постоянном снижении объемной скорости подачи сырья вначале цикла контактирования на 3-15% выше, а в конце цикла на 3-15% ниже среднецикловой объемной скорости подачи сырья. Предлагаемый способ позволяет увеличить суммарный выход полезных продуктов при переработке пирановой фракции, фракции побочных продуктов либо их смеси. 2 з.п. ф-лы, 4 табл.

Формула изобретения

1. Способ переработки побочных продуктов жидкофазного синтеза изопрена из изобутилена и формальдегида или формальдегидсодержащих продуктов, в частности 4,4-диметил-1,3-диоксана, в интервале температур 400-480°С в присутствии водяного пара на алюмосиликатсодержащем катализаторе с предварительным нагревом побочных продуктов до температуры 400-550°С в присутствии водяного пара, отличающийся тем, что процесс проводят при начальной температуре на 5-40°С ниже и конечной температуре на 5-40°С выше средней температуры контактирования при постепенном повышении температуры от начальной до конечной и при постоянном снижении объемной скорости подачи сырья вначале цикла контактирования на 3-15% выше, а в конце цикла на 3-15% ниже среднецикловой объемной скорости подачи сырья.

2. Способ по п.1, отличающийся тем, что при использовании в качестве побочных продуктов фракции 4-метил-5,6-дигидро-способ переработки побочных продуктов жидкофазного синтеза изопрена   из изобутилена и формальдегида, патент № 2365574 -пирана, образующейся при жидкофазном взаимодействии формальдегида или формальдегидсодержащих продуктов, в частности 4,4-диметил-1,3-диоксана и триметилкарбинола и/или изобутилена или смеси фракции 4-метил-5,6-дигидро-способ переработки побочных продуктов жидкофазного синтеза изопрена   из изобутилена и формальдегида, патент № 2365574 -пирана с высококипящими побочными продуктами фракцию 4-метил-5,6-дигидро-способ переработки побочных продуктов жидкофазного синтеза изопрена   из изобутилена и формальдегида, патент № 2365574 -пирана предварительно испаряют в испарителе в присутствии водяного пара.

3. Способ по п.1, отличающийся тем, что в качестве алюмосиликатсодержащего катализатора используют промышленные катализаторы К-84 или К-97.

Описание изобретения к патенту

Изобретение относится к области нефтехимической технологии, точнее к способу получения изопрена, изобутилена и формальдегида из побочных продуктов производства изопрена. Оно может найти применение в промышленности синтетического каучука и в органическом синтезе.

До недавнего времени широкое распространение имел двухстадийный процесс производства изопрена из изобутилена и формальдегида. На первой стадии при взаимодействии изобутилена с формальдегидом в присутствии кислотного катализатора образуется 4,4-диметилдиоксан-1,3 (ДМД) и побочные продукты, представляющие собой, в основном, диоксановые спирты и их производные. Указанные побочные продукты кипят при более высоких температурах, чем ДМД, и поэтому получили название высококипящих побочных продуктов синтеза изопрена (ВПП).

На второй стадии процесса ДМД разлагают в изопрен на кальцийборфосфатсодержащих катализаторах в присутствии водяного пара при 250-450°С. При этом в качестве побочных продуктов образуется формальдегид, изобутилен, изопропенилэтиловый спирт (ИПЭС), метилдигидропиран (МДГП), метилентетрагидропиран (МТГП), зеленое масло и др. Формальдегид, изобутилен и ИПЭС направляются в рецикл, зеленое масло сжигается, а фракцию МДГП, представляющую собой смесь МДГП, МТГП и легких компонентов с температурой кипения 40-85°С (так называемая гексадиеновая фракция), направляется на каталитическое разложение. Выход ВПП составляет 400-450 кг на 1 т изопрена. Часть ВПП находит квалифицированное применение (например, в качестве флотореагента), легкая часть ВПП разлагается в изопрен и исходные продукты синтеза, а оставшаяся часть сжигается.

Известен способ переработки побочных продуктов синтеза изопрена путем каталитического расщепления фракции ВПП (Т кип. 150-300°С) при постоянной температуре 400°С. В качестве катализатора используют окись кремния и алюмосиликат (патент Японии № 49-38249, опубл. 16.10.1974 г.). Выход изопрена достигается 14-17%, формальдегида - 27-33%.

Недостаток способа - значительное отложение кокса, усложнение технологии за счет длительной окислительной регенерации катализатора и низкий выход целевых продуктов.

Известен способ переработки ВПП путем совместного разложения ВПП и 5-70% фракции МДГП, выделяемой из катализата, получаемого при парофазном гетерогенном разложении ДМД на кальцийборфосфатсодержащем катализаторе, из которой предварительно выделяют фракцию, кипящую до температуры 40-85°С, последовательно над двумя катализаторами - твердым контактом с удельной поверхностью 0,2-1,0 м2/г и оксидным алюмосиликатсодержащим катализатором К-84 следующего состава, % масс.:

Al2O3 - 5,0-30,0
Fe2O3 - 0,1-5,0
MgO- 0,1-5,0
CaO - 0,1-5,0
K2O- 0,1-3,0
Na 2O- 0,1-3,0
TiO2 - 0,1-3,0
SiO2 - остальное

взятых в соотношении (0,05-0,3):1 соответственно.

Процесс проводят в интервале температур 200-480°С в присутствии водяного пара при постоянной температуре контактирования и постоянной объемной скорости подачи сырья (патент России № 1695631, опубл. 20.12.1996 г.). В качестве сырья используют легкую часть фракции ВПП (легкая фракция ВПП) и фракцию МДГП, полученную из катализата, образовавшегося при гетерогенном разложение ДМД, из которой предварительно отогнана фракция, кипящая до температуры 40-85°С.

В указанном способе увеличивается глубина конверсии ВПП, производительность процесса, длительность цикла контактирования, однако отмечается повышенное коксоотложение на уровне 2,0% масс., а также небольшая конверсия тяжелого остатка (~80%), что приводит к забивкам системы конденсации и небольшому суммарному выходу полезных продуктов (СВПП) (изобутилен, изопрен, формальдегид, 2-метилпропан-2-ол, 3-метил-1-бутен-3-ол, 4-метилентетрагидро-способ переработки побочных продуктов жидкофазного синтеза изопрена   из изобутилена и формальдегида, патент № 2365574 -пиран, 4-метил-5,6-дегидро-способ переработки побочных продуктов жидкофазного синтеза изопрена   из изобутилена и формальдегида, патент № 2365574 -пиран, 4,4-диметилдиоксан-1,3, 3-метилбутандиол-1,3) - 81,0-81,5%.

Увеличить СВПП и снизить коксоотложение позволяет способ переработки побочных продуктов, осуществляемый в интервале температур 350-550°С в присутствии водяного пара и 0,2-5,0% аммиака на каталитической композиции, состоящей из твердого контакта с удельной поверхностью 0,2-1,0 м2 /г и алюмосиликатсодержащего катализатора К-84, содержащего, % масс.:

Al2O3 - 5,0-30,0
Fe2O3 - 0,1-5,0
MgO- 0,1-5,0
CaO - 0,1-5,0
K2O- 0,1-3,0
Na 2O- 0,1-3,0
TiO2 - 0,1-3,0
SiO2 - остальное

При этом каталитическая композиция состоит из четырех слоев вышеперечисленных компонентов.

Процесс проводят при постоянной температуре контактирования и объемной скорости подачи сырья.

В качестве исходных побочных продуктов используют ВПП либо техническую фракцию МДГП, полученную из катализата, образовавшегося при гетерогенно-каталитическом разложении ДМД, либо их смесь (патент России № 2134679, опубл. 20.08.1999 г.). Недостатком способа также является повышенное коксоотложение - 1,8%, низкая селективность процесса и небольшая конверсия тяжелого остатка (~78-80%).

Известен также способ переработки побочных продуктов синтеза изопрена из изобутилена и формальдегида - ВПП и/или пирановой фракции путем расщепления исходных продуктов в интервале температур 350-450°С в присутствии водяного пара на алюмосиликатсодержащем катализаторе «К-97», содержащем, % масс.:

Al2O3 - 5,0-30,0
Fe2O3 - 0,4-5,0
MgO- 0,4-5,0
CaO - 5,2-7,0
K2O- 1,0-3,0
Na 2O- 1,0-3,0
TiO2 - 0,4-1,0
SiO2 - остальное

либо на катализаторе вышеуказанного состава совместно с твердым контактом - непористым материалом с удельной поверхностью 0,2-1,0 м2/г при соотношении твердый контакт:катализатор - (0,05-0,3):1 (Пат. РФ № 2167710, опубл. 27.05.2001).

Процесс проводят при постоянной температуре контактирования и объемной скорости подачи сырья.

Для расщепления используют общую фракцию ВПП, полученную на стадии синтеза ДМД с рециркуляцией водного слоя, либо легкую фракцию ВПП, выделенную из общей фракции ВПП и содержащую в основном диоксановые спирты, либо пирановую фракцию, из которой предварительно выделена фракция гексадиенов с температурой кипения 40-85°С, либо смесь ВПП и пирановой фракции. К числу недостатков данного способа переработки побочных продуктов следует также отнести небольшую глубину конверсии тяжелого остатка - 75%, повышенное коксоотложение и небольшой СВПП.

Известен также способ переработки побочных продуктов производства изопрена - фракции МДГП, выделяемой из катализата процесса разложения ДМД на кальцийборфосфатсодержащих катализаторах с предварительной отгонкой из нее продуктов с температурой кипения до 80°С, либо фракции ВПП, полученных на первой стадии синтеза изопрена из изобутилена и формальдегида с рециркуляцией водного слоя, либо МДГП в смеси с ВПП, на алюмосиликатсодержащих катализаторах «К-84» или «К-97» (состав которых приведен выше) в интервале температур 400-480°С в присутствии водяного пара при постоянной температуре контактирования и объемной скорости подачи сырья с предварительным разбавлением сырья и нагреванием его до подачи в зону контактирования до температуры 400-550°С (патент РФ № 2278105 - прототип).

К числу недостатков данного изобретения следует отнести повышенное коксоотложение, небольшую величину конверсии сырья и тяжелого остатка, а также небольшую глубину конверсии неидентифицированных продуктов - «х»-ов и, как следствие всего этого, небольшой СВПП.

С целью дальнейшего повышения селективности процесса (СВПП), увеличения конверсии сырья и тяжелого остатка, а также глубины переработки формальдегидсодержащих продуктов - в частности ДМД - осуществлять в интервале температур 400-480°С в присутствии водяного пара на алюмосиликатсодержащем катализаторе с предварительным нагревом до температуры 400-550°С в присутствии водяного пара при проведении процесса при начальной температуре на 5-40°С ниже и конечной температуре на 5-40°С выше средней температуры контактирования при постепенном повышении температуры от начальной до конечной по симбатной зависимости и при постоянном снижении объемной скорости подачи сырья в начале контактирования на 3-15% выше, а в конце контактирования на 3-15% ниже среднецикловой объемной скорости подачи сырья по адиабатной зависимости.

В качестве побочных продуктов используют либо фракцию МДГП, образующуюся при жидкофазном взаимодействии изобутилена и формальдегида или формальдегидсодержащих продуктов, в частности ДМД и ТМК и (или) изобутилена, либо фракцию ВПП, образующуюся при синтезе ДМД, либо их смесь.

В качестве фракции ВПП может быть использована либо общая фракция ВПП, либо ее легкая часть, полученная путем разгонки и состоящая в основном из диоксановых спиртов. Фракцию ВПП добавляют (впрыскивают) в испаренную в присутствии водяного пара фракцию МДГП перед стадией перегрева до температуры 400-550°С.

Существенными отличительными признаками предлагаемого способа являются проведение процесса при начальной температуре контактирования на 5-40°С ниже и конечной температуре на 5-40°С выше средней температуры контактирования при постепенном повышении температуры от начальной до конечной и при постоянном снижении объемной скорости подачи сырья вначале контактирования на 3-15% выше, а в конце контактирования на 3-15% ниже среднецикловой объемной скорости подачи сырья.

Промышленная применимость предлагаемого способа подтверждается следующими примерами.

Пример 1.

В качестве исходного побочного продукта используют фракцию МДГП, полученную при взаимодействии ДМД и ТМК при 165°С в присутствии 6% фосфорной кислоты (состав фракции приведен в табл.1).

Таблица 1.
Состав фракции МДГП
Наименование компонентов % мас.
ТМК0,5
ДМВК 6,8
димеры 0,3
ИБК1,4
МТГП 2,6
МДГП 51,4
XX до ДМД28,3
ДМД 3,8
МБД 0,0
Пирановый спирт 0,0
Диоксановый спирт 10,0
Диоксановый спирт 20,0
Диоксановый спирт 30,0
XX после ДМД 4,3
Тяжелый остаток 0,6
Сумма 100,0

Указанные продукты разбавляют водяным паром при соотношении фракция МДГП:H2O~1:0,3 (% масс.) и нагревают до температуры 400°С с добавлением в поток водяного пара до доведения соотношения фракция МДГП:H 2O=1:2,0 (масс.), после чего направляют в реактор с загруженным в него катализатором К-97, содержащим, % масс.:

Al2O3 - 22,0
Fe 2O3 - 0,4
MgO - 1,0
CaO- 5,7
K2O - 1,0
Na2O- 3,0
TiO 2- 1,0
SiO2 - остальное

Процесс переработки МДГП осуществляют в начале цикла при температуре 395°С и в конце цикла при температуре 405°С и начальной объемной скорости подачи сырья 1,03 час-1 и конечной объемной скорости в конце цикла контактирования 0,97 час-1. При этом в ходе цикла контактирование температура постепенно повышается, а объемная скорость снижается. Длительность цикла контактирования составляет 3 часа. Соотношение сырье:вода составляет 1,0:3,0. После цикла контактирования катализатор регенерируют паровоздушной смесью при 500°С.

Результаты опыта приведены в табл.4, опыт 1.

Пример 2.

Процесс переработки побочных продуктов осуществляют таким же образом, как в примере 1, за исключением того, что начальная температура процесса составляет 360°С, а конечная 440°С, при этом объемная скорость подачи сырья в начале цикла контактирования составляет 1,15 час-1, а в конце цикла контактирования 0,85 час-1. В процессе переработки побочных продуктов используется катализатор К-84. Результаты опыта приведены в табл.4, опыт 2.

Пример 3.

Процесс переработки побочных продуктов осуществляют таким же образом, как в примере 1, за исключением того, что начальная температура процесса составляет 410°С, а конечная 490°С, при этом объемная скорость подачи сырья в начале цикла контактирования составляет 1,15 час -1, а в конце цикла контактирования 0,85 час-1 . В качестве сырья используют пирановую фракцию, состав которой приведен в табл.2. В процессе переработки побочных продуктов используется катализатор К-84. Результаты опыта приведены в табл.4, опыт 3.

Пример 4.

Процесс переработки побочных продуктов осуществляют таким же образом, как в примере 1, за исключением того, что температура процесса постоянная и составляла 450°С, при этом объемная скорость подачи сырья составляет 1,0 час-1. В качестве сырья используют пирановую фракцию, состав которой приведен в табл.2. В процессе переработки побочных продуктов используется катализатор К-84. Результаты опыта приведены в табл.4, опыт 4.

Пример 5.

В качестве сырья используют фракцию ВПП, состав которой приведен в табл.3. Процесс переработки побочных продуктов осуществляют таким же образом, как в примере 1, за исключением того, что начальная температура процесса составляет 410°С, а конечная 490°С, при этом объемная скорость подачи сырья в начале цикла контактирования составляет 1,15 час-1 , а в конце цикла контактирования 0,85 час-1. В процессе переработки побочных продуктов используется катализатор К-84.

Результаты опыта приведены в табл.4, опыт 5.

Пример 6.

75% масс. ВПП (состав приведен в табл.3) впрыскивают в испаренную паросырьевую смесь, содержащую фракцию МДГП (состав приведен в табл.1) и составляющую 25% от поданных в нее ВПП, при этом соотношение сырье (ВПП+МДГП):H2 O (масс.) перед перегревом составляет 1,0:2,0. Указанную паросырьевую смесь подогревают до температуры 500°С, после чего подают в реактор, загруженный катализатором К-97.

Процесс проводят так же, как описано в примере 1, за исключением того, что начальная температура контактирования составляет 410°С, а конечная 490°С, объемная скорость в начале цикла контактирования - 1,15 час-1, а в конце цикла контактирования 0,85 час-1. Результаты опыта приведены в табл.4 (опыт 6).

Суммарный выход полезных продуктов при переработке пирановой фракции с пониженным содержанием МДГП составил 70,1-70,8% мас. (примеры 1, 2) при использовании сырья (табл.1) с пониженным содержанием МДГП.

При переработке фракции ВПП (пример 5) конверсия сырья составила 96,4% мас., тяжелого остатка 88,6% мас., СВПП 87,9% мас.

При совместной переработке пирановой фракции (25%) и фракции ВПП (75%) (пример 6) конверсия сырья составила 97,1% мас., тяжелого остатка 88,4% мас., СВПП 86,1% мас.

При использовании пирановой фракции (табл.2) с более высоким содержанием МДГП (пример 3) суммарный выход полезных продуктов составил 86,7% мас., что на 3,1% мас выше, чем при переработке сырья при постоянной температуре и объемной скорости подачи сырья (пример 4), при этом конверсия сырья увеличилась на 0,3% мас.

Таким образом, применение вышеуказанного приема процесса переработки побочных продуктов синтеза изопрена позволяет увеличить суммарную выработку полезных продуктов при переработке пирановой фракции, фракции ВПП, а также их смеси.

Таблица 2
Состав фракции МДГП
Наименование компонентов % мас.
ТМК0,2
ацетон 0,2
гексадиены 0,9
ИБК1,4
МТГП 3,1
МДГП 59,0
XX до ДМД23,3
ДМД 3,7
МБД 0,0
Пирановый спирт 0,0
Диоксановый спирт 10,0
Диоксановый спирт 20,0
Диоксановый спирт 30,0
XX после ДМД 8,2
Тяжелый остаток 0,0
Сумма 100,0

Таблица 3.
Состав фракции ВПП
Наименование компонентов % мас.
ТМК0,06
ДМВК 0,0
димеры 0,0
ИБК0,01
МТГП 0,0
МДГП 0,0
ХХ до ДМД0,08
ДМД 0,03
МБД 0,0
Пирановый спирт 0,2
Диоксановый спирт 12,92
Диоксановый спирт 241,7
Диоксановый спирт 37,9
XX после ДМД 35,8
Тяжелый остаток 11,3
Сумма 100,0

Таблица 4.
Показатели процесса переработки побочных продуктов синтеза изопрена из изобутилена и формальдегида.
Длительность контактирования - 3 час.
Разбавление исходного сырья водой, масс. = 1,0:3,0
Показатели Пример
12 34 56 7
Сырье МДГП МДГПМДГП* МДГП*ВПП 75% ВПП + 25% МДГП 75% ВПП + 25% МДГП
Катализатор«К-97» «К-84» «К-84» «К-84» «К-84» «К-97» «К-1»
Температура разложения, °С 395-405360-440 410-490 450410-490 410-490 410-490
Объемная скорость подачи сырья, час-1 1,03-0,971,15-0,85 1,15-0,85 1,01,15-0,85 1,15-0,85 1,15-0,85
Конверсия, % способ переработки побочных продуктов жидкофазного синтеза изопрена   из изобутилена и формальдегида, патент № 2365574
Сырья98,6 98,598,9 98,696,4 97,195,2
СВПП 70,170,8 86,783,6 87,986,1 79,8
Тяжелого остатка- -- -88,6 88,486,5
Коксоотложение, % мас.0,36 0,35 0,370,38 0,610,47 0,45
*использовано сырье по прототипу

Пример 7

Сырье и условия проведения процесса аналогичны приведенным в примере 6, за исключением того, что в качестве катализатора в реактор загружают алюмосиликатсодержащий катализатор «К-1» следующего состава, % масс.:

Al2O3 - 32,0-46,0
Fe2O3 - 0,1-1,5
MgO- 0,05-1,5
CaO - 0,05-1,5
K2O- 1,0-4,0
Na 2O- 0,5-1,5
TiO2 - 0,1-1,5
SiO2 - остальное

Результаты опыта приведены в табл.4 (опыт 7).

Класс C07C11/18 изопрен

реактор для жидкофазного синтеза изопрена -  патент 2478603 (10.04.2013)
способ переработки метилдигидропирана и/или побочных продуктов синтеза изопрена из изобутилена и формальдегида -  патент 2461538 (20.09.2012)
способ получения изопрена -  патент 2459790 (27.08.2012)
способ получения изопрена -  патент 2458900 (20.08.2012)
способ получения изопрена -  патент 2458036 (10.08.2012)
способ получения изопрена -  патент 2458035 (10.08.2012)
способ переработки побочных продуктов синтеза изопрена -  патент 2458034 (10.08.2012)
способ получения изопрена -  патент 2458033 (10.08.2012)
способ получения изопрена -  патент 2448939 (27.04.2012)
способ комплексного использования изобутана в производстве изопрена и бутилкаучука -  патент 2448938 (27.04.2012)

Класс C07C2/86 конденсацией углеводорода с неуглеводородом

способ алкилирования бензола изопропиловым спиртом или смесью изопропилового спирта и пропилена -  патент 2525122 (10.08.2014)
способ получения фенилэтинил производных ароматических соединений -  патент 2524961 (10.08.2014)
способ получения 1-алкиниладамантанов -  патент 2507189 (20.02.2014)
способ синтеза 1,2,6,7-бис-(9н,10н-антрацен-9,10-диил)пирена-мономолекулярного оптического сенсора для обнаружения нитроароматических соединений -  патент 2501780 (20.12.2013)
способ подготовки газа и газового конденсата к транспорту -  патент 2488428 (27.07.2013)
способ синтеза 2,3,6,7,10,11-трис-(9н,10н-антрацен-9,10-диил)трифенилена - мономолекулярного оптического сенсора для обнаружения нитроароматических соединений -  патент 2485084 (20.06.2013)
реактор для жидкофазного синтеза изопрена -  патент 2478603 (10.04.2013)
способ получения 1,4-дизамещенных [1.1.1b.1.1] пентиптиценов -  патент 2474568 (10.02.2013)
способ переработки метилдигидропирана и/или побочных продуктов синтеза изопрена из изобутилена и формальдегида -  патент 2461538 (20.09.2012)
органическое соединение и органическое светоизлучающее устройство, в котором применяется такое органическое соединение -  патент 2459795 (27.08.2012)
Наверх